Math 4740 10/2/23

Calendar

M-10/2 TOPIC 3	$W-10 / 4$ Review
M TEST 1	Topic 3/4
\vdots	\vdots

Study guide is un the website

Ex: (HW 3 \#3 modified) Suppose you coll two 8 -sided dice. You can't see the outcome, but your friend can. They tell you that the sum of the dice is divisible by 5 . What is the probability that both dice have landed on 5 ?

$$
\begin{aligned}
& S=\{(a, b) \mid a, b=1,2, \ldots, 8\} \\
& |S|=8^{2}=64 \\
& F=\{(a, b) \mid a+b \text { is divisible by } 5\} \\
& E=\{(5,5)\} \quad P(E \cap F \mid
\end{aligned}
$$

$$
\begin{aligned}
& E=\{(5,5)\} \\
& \text { Want: } P(E \mid F)=\frac{P(E \cap F)}{P(F)}
\end{aligned}
$$

We have

$$
\begin{aligned}
& F=\left\{\begin{aligned}
\left\{\begin{array}{l}
(1,4),(2,3),(2,8),(3,2),(3,7), \\
(4,1),(4,6),(5,5),(6,4), \\
(7,3),(7,8),(8,2),(8,7)\}
\end{array}\right. \\
E \cap F=\{(5,5)\}
\end{aligned}\right. \\
& \begin{aligned}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} & =\frac{(1 / 64)}{(13 / 64)} \\
& =1 / 13 \\
& \approx 0.7692 \ldots \\
& \approx 7.7 \%
\end{aligned}
\end{aligned}
$$

Theorem: Let (S, Ω, P) be a probability space.
(1) Let A and B be events and $P(A)>0$. Then

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

(2) Let $A_{1}, A_{2}, \ldots, A_{n}$ be events with $P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)>0$.

Then,

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)= \\
& P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot \\
& \quad \cdot P\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) \cdots \\
& \quad \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

(3) (Law of total probability)

Suppose $S=E_{1} \cup E_{2} \cup \cdots \cup E_{n}$ where each $E_{i} \neq \phi$, and $E_{i} \cap E_{j}=\phi$ if $i \neq j$,

$E_{n} |$| S is |
| :--- |
| broken |
| into |
| disjoint |
| dents | and $P\left(E_{i}\right) \neq 0$ for each i.

Then for event E we have

$$
\begin{aligned}
& P(E)=P\left(E \mid E_{1}\right) \cdot P\left(E_{1}\right)+\left[P\left(E \cap E_{1}\right)\right. \\
&+P\left(E \mid E_{2}\right) \cdot P\left(E_{2}\right)+\begin{array}{c}
+ \\
\\
\\
\\
\\
\\
\end{array}+P\left(E \mid E_{n}\right) \cdot P\left(E_{n}\right) \\
& \vdots \\
& \vdots \\
& P\left(E_{\cap}\right)
\end{aligned}
$$

Ex: Suppose there are three boxes. In box 1, there are two 4 -sided dice. In $b \circ \times 2$, there are two 6 -sided dice. In box 3 , there are two 8 -sided dice.
Suppose you rand only pick a box (each box is equally likely to be chosen), then you take the dice out of that box arid roll them.
What is the probability that the sum of the dice is 8?
Solution:

Picked box
1
:---
$\frac{\text { dice is } 8}{\{(4,4)\}}$
:---
of sum 8
when box
is picked
$1 / 16$

$\left.\begin{array}{l}\begin{array}{|c}\begin{array}{c}\text { picked box } \\ 2\end{array} \\ \hline \begin{array}{l}\text { picked } \\ \text { box } 3 \\ (4,4),(5,3), \\ (6,2)\}\end{array}\end{array} \rightarrow \begin{array}{l}\begin{array}{l}\text { Sum of dice } \\ \text { is 8 }\end{array} \\ (2,6),(3,5), \\ \frac{\text { sum of dice is } 8}{\{(1,7),(2,6),(3,5),} \\ (4,4),(5,3), \\ (6,2),(7,1)\}\end{array}\end{array} \rightarrow \begin{array}{l}\begin{array}{l}\text { probability } \\ \text { of sum 8 } \\ \text { when box } \\ \text { 2 is picked }\end{array} \\ \text { probability } \\ \text { of sum } 8 \\ \text { when box } \\ 3 \text { is picked } \\ 7 / 64\end{array}\right]$
$P($ sum of dice is 8$)$

$$
\begin{aligned}
& =P\left(\left.\begin{array}{l}
\text { sum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 1 \text { picked }\right) \cdot P\binom{\text { box } 1}{\text { picked }} \\
& +P\left(\left.\begin{array}{l}
\text { qum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 2 \text { picked }\right) \cdot P\binom{\text { box } 2}{\text { picked }} \\
& +P\left(\left.\begin{array}{l}
\text { sum of } \\
\text { dice is } 8
\end{array} \right\rvert\, \text { box } 3 \text { picked }\right) \cdot P\binom{\text { box } 3}{\text { picked }}
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 16)\left(\frac{1}{3}\right)+(5 / 36)\left(\frac{1}{3}\right)+(7 / 64)\left(\frac{1}{3}\right) \\
& =\frac{11,456}{110,592} \approx 0.1036 \ldots \approx 10,36 \%
\end{aligned}
$$

Ex: (Monty Hall)
Let's redo the probability of the switch strategy for Montey Hall (start with door 1 and sustchafter Monty reveals another door).

$$
\begin{aligned}
& P(\text { Win car }) \\
& =P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 1 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 1 }} \\
& +P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 2 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 2 }} \\
& +P\left(\begin{array}{c|c}
\text { win } & \text { car behind } \\
\text { car } & \text { door 3 }
\end{array}\right) \cdot P\binom{\text { car behind }}{\text { door 3 }}
\end{aligned}
$$

$$
\begin{aligned}
& =(0)\left(\frac{1}{3}\right)+(1)\left(\frac{1}{3}\right)+(1)\left(\frac{1}{3}\right) \\
& =2 / 3
\end{aligned}
$$

Sometimes $P(E \mid F)$ is not equal to $P(E)$ and
sometimes it is.
Suppose $P(E \mid F)=P(E)$.
Then, $\quad \frac{P(E \cap F)}{P(F)}=P(E)$.
So, $P(E \cap F)=P(E) \cdot P(F)$
Def: We say that two events E and F are independent if $P(E \cap F)=P(E) \cdot P(F)$
otherwise we say they are dependent.

Note: Suppose $P(E)>0$ and $P(F)>0$
E and F are independent is equivalent to

$$
P(E \cap F)=P(E) \cdot P(F)
$$

is equivalent to

$$
\frac{P(E \cap F)}{P(E)}=P(F) \text { and } \frac{P(E \cap F)}{P(F)}=P(E)
$$

is equivalent to

$$
P(F \mid E)=P(F) \text { and } P(E \mid F)=P(E)
$$

