Math 4740

$$
10 / 18 / 23
$$

(Topic 4 continued...)

Ex continued...
roll two 6-sided dice
$\underline{X}=$ sum of the dice

Then,

$$
\begin{aligned}
& E[\bar{X}]=\sum_{t=2}^{12} t \cdot P(X=t) \\
&=(2)\left(\frac{1}{36}\right)+(3)\left(\frac{2}{36}\right)+(4)\left(\frac{3}{36}\right) \\
&+(5)\left(\frac{4}{36}\right)+(6)\left(\frac{5}{36}\right)+(7)\left(\frac{6}{36}\right) \\
&+(8)\left(\frac{5}{36}\right)+(9)\left(\frac{4}{36}\right)+(10)\left(\frac{3}{36}\right) \\
&+(11)\left(\frac{2}{36}\right)+(12)\left(\frac{1}{36}\right) \\
&= 7
\end{aligned}
$$

Ex: Suppose you flip a coin 3 times. For every head you lose $\$ 1$. For every tail you win $\$ 2$. Let \mathbb{X} be the amount won/lost Draw \bar{X} and $p(t)=P(X=t)$ Calculate $E[\bar{x}]$

$$
\begin{aligned}
E[\bar{X}]= & (-3)\left(\frac{1}{8}\right)+(0)\left(\frac{3}{8}\right) \\
& +(3)\left(\frac{3}{8}\right)+(6)\left(\frac{1}{8}\right) \\
= & \frac{-3+9+6}{8}=\frac{12}{8}=1.5
\end{aligned}
$$

This is saying that if you played the game aloft of times un average you'd win $\$ 1.50$ per play.

So say you played the game 1 million times then you'd expect to win around

$$
\begin{aligned}
& (1,000,000) \cdot(\$ 1,50) \\
= & \$ 1,500,000 .
\end{aligned}
$$

Odds Let E be an event.
We define

$$
\begin{aligned}
& \text { We define } \\
& \text { odds for } E=\frac{P(E)}{P(\bar{E})}=\frac{P(E)}{1-P(E)}
\end{aligned}
$$

odds against $E=\frac{P(\bar{E})}{P(E)}=\frac{1-P(E)}{P(E)}$

Ex: Suppose we roll a 4 -sided die. Let E be the event that we roll a 1 .
So, $P(E)=\frac{1}{4}$.
Odds for $\left.E=\frac{P(E)}{1-P(E)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}\right] \begin{gathered}\text { written } \\ 1: 3 \\ \text { read } \\ \text { "11 to } 3^{\prime \prime}\end{gathered}$
odds against $\left.E=\frac{1-P(E)}{P(E)}=\frac{3 / 4}{Y_{y}}=\frac{3}{1}\right]_{\text {written }}^{\text {wad }} \begin{gathered}\text { rel .1" } \\ \text { read }\end{gathered}$

How to convert odds to probabilities

$$
\begin{gathered}
\text { odds for } E \\
a: b
\end{gathered} \longrightarrow P(E)=\frac{a}{a+b}
$$

$\begin{gathered}\text { odds against } E \\ C: d\end{gathered} \rightarrow P(E)=\frac{d}{c+d}$

Ex: Suppose the odds for E are $3: 5$. Then $P(E)=\frac{3}{3+5}=\frac{3}{8}$

Ex: Suppose the odds against E are $4: 6$. Then $P(E)=\frac{6}{4+6}=\frac{6}{10}$

Let's learn about Roulette.

