$$
\text { math } 4740
$$

$$
10 / 11 / 23
$$

Ex: Suppose you roll two 6-sided die, one green and one red.
Let E be the event that the green die is 1.
Let F be the event that the red die is 3 .
Are these events independent? ?

$$
\begin{aligned}
& S=\left\{(9, r) \left\lvert\, \begin{array}{l}
g=1,2,3,4,5,6 \\
r=1,2,3,4,5,6
\end{array}\right.\right\} \sim|5|=36 \\
& E=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\} \\
& F=\{(1,3),(2,3),(3,3),(4,3),(5,3),(6,3)\} \\
& E \cap F=\{(1,3)\} \\
& P(E \cap F)=\frac{1}{36} \\
& P(E) \cdot P(F)=\frac{6}{36} \cdot \frac{6}{36}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
\end{aligned}
$$

So, $P(E \cap F)=P(E) \cdot P(F)$
Thus, E and F are independent.

Ex: Suppose you roll two 6-sided die, one green and one red.
Let E be the event that the sum of the dice is 6 .
Let F be the event that the red die equals 4 .

$$
\begin{aligned}
& S=\{(9, r) \mid g, r=1,2,3,4,5,6\} \leftharpoondown|s|=36 \\
& E=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \\
& F=\{(1,4),(2,4),(3,4),(4,4),(5,4),(6,4)\} \\
& E \cap F=\{(2,4)\}
\end{aligned}
$$

$$
\begin{aligned}
& P(E \cap F)=1 / 36 \approx 0.0278 \ldots \\
& P(E) \cdot P(F)=(5 / 36)(6 / 36)=\frac{5}{216} \approx 0.0231 \ldots
\end{aligned}
$$

Thus, $P(E \cap F) \neq P(E) \cdot P(F)$.
So, E and F are not independent.

Def: (General def of independence) In a probability space (S, Ω, P) the events $E_{1}, E_{2}, \ldots, E_{n}$ are said to be independent if for every $2 \leq k \leq n$ we have that

$$
P\left(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{k}}\right)=P\left(E_{i_{1}}\right) \cdot P\left(E_{i_{2}}\right) \cdots P\left(E_{i_{k}}\right)
$$

Whenever $\mid \leqslant \bar{l}_{1}<i_{2}<\cdots<i_{k} \leqslant n$

Ex: E_{1}, E_{2}, E_{3} are independent if all of the following are true:

$$
\begin{aligned}
& P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \\
& P\left(E_{1} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{3}\right) \\
& P\left(E_{2} \cap E_{3}\right)=P\left(E_{2}\right) \cdot P\left(E_{3}\right) \\
& P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \cdot P\left(E_{3}\right)
\end{aligned}
$$

Theorem: Let S be a sample space of a repeatable experiment. Let A and B be events where $A \cap B=\phi \quad[$ they don't overlap. This is called disjoint events] Suppose further that each time we repeat the experiment S, the experiment is independent of the previous times we did experiment S. Suppose we keep repeating S until either A or B occurs and then we stop. Then the probability that A occurs before B is given by $\frac{P(A)}{P(A)+P(B)}$
proof: See Spring 2022 notes

Ex: Suppose we roll two 6-sided die over and over. Let A be the event that the sum of the dice is 5, Let B be the event that the sum of the dice is 7. We keep rolling the dice until either A or B happens and then we stop. Whats the probability that A occurs before B, ic that we roll sum of 5 before we roll sum of $7 \begin{aligned} & 5 \\ & 0\end{aligned}$

Ex:
roll $1-\square \square \cdot \square \leftarrow$ sum $=3$
roll 2- $\square \square$ sum =2

$$
\text { roll } 3-\because \because \operatorname{sum}=5
$$

Sum is 5 uccured he fore sum is 7

$$
\begin{aligned}
& S=\{(a, b) \mid a, b=1,2,3,4,5,6\} \in|5|=36 \\
& A=\{(1,4),(2,3),(3,2),(4,1)\} \\
& B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
& P(A)=4 / 36 \\
& P(B)=6 / 36
\end{aligned}
$$

Probability sum is S occurs before

Sum is 7 is $[$ ie A before $B]$

$$
\frac{P(A)}{P(A)+P(B)}=\frac{4 / 36}{4 / 36+6 / 36}=\frac{4}{10}=\frac{2}{5}=40 \%
$$

probability sum is 7 occurs before Sum is 5 uccurs is [ie B before A]

$$
\frac{P(B)}{P(B)+P(A)}=\frac{6 / 36}{6 / 36+4 / 36}=\frac{6}{10}=60 \%
$$

Topic 4 - Random Variables, Expected Value, Games

Def: Let (S, Ω, P) be a probability space. A random variable is a function
$\underline{\text { 区 }}: S \rightarrow \mathbb{R}$ such that $\left\{\begin{array}{l}X \text { is a function } 2 \\ \text { input }=S\end{array}\right.$ for all real output = real $\# s=\mathbb{R}$ numbers t we have that

$$
\begin{aligned}
& \text { we have that } \\
& E_{t}=\{w \mid w \in S \text { and } X(w) \leq t\}
\end{aligned}
$$ is an event in Ω.

Note: The condition on E_{t} means we can calculate $P\left(E_{t}\right)$ In our class when S is finite and Ω is all subsets of S this condition will always occur so a random variable is just a function $\bar{X}: S \rightarrow \mathbb{R}$

Def: Let X be a random variable on a probability space (S, Ω, P). We say that \mathbb{Z} is discrete if the range of \underline{X} can be enumerated as a list of values $x_{1}, x_{2}, x_{3}, \ldots$

$$
\text { For Math } 3450 \text { : Ie, the }
$$ range of \mathbb{Z} is finite or countably infinite

