Math 4680

$$
12 / 7 / 22
$$

HF 9
(1)(c) Evaluate $\int_{\gamma} e^{1 / z} d z$ where γ is a circle of radius 2 centered at $2+i$. $f(z)=e^{1 / z}$ is analytic everywhere except at 0 . Since $f(z)=e^{1 / z}$ is analytic inside and on γ by cauchy's theorem

$$
\int_{\gamma} e^{1 / z} d z=0 .
$$

HF 10
(1) (f) Evaluate $\int_{\gamma} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z$
where γ is the circle $|z|=4$ oriented counterclockwise.
$\frac{z}{\left(9+z^{2}\right)(z+i)^{2}}$ is not analytic when $z \neq \pm 3 i,-i$
$9+z^{2}=0$ when $z^{2}=-9$ which is when $z= \pm 3 i$
$z+i=0$ when $z=-i$

Our function $\frac{z}{\left(9+z^{2}\right)(z+i)^{2}}$ is analytic on $\gamma_{,}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ an in between the curves.

Thus, $\int_{\gamma} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z \quad z^{2}+9=(z+3 i)(z-3 i)$

$$
=\int_{\gamma_{1}} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z+\int_{\gamma_{2}} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z+\int_{\gamma_{3}} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z
$$

$$
\begin{aligned}
& \int_{\gamma_{1}} \frac{z}{(z+3 i)(z+i)^{2}} \\
& (z-3 i)
\end{aligned} d z=2 \pi i\left[\frac{3 i}{(3 i+3 i)(3 i+i)^{2}}\right] \stackrel{\text { (calculate) }}{=} \frac{-\pi i}{16}
$$

$$
\int \begin{aligned}
& \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) \\
& f \text { is analytic on and ir }
\end{aligned}
$$

f is analytic on and in γ

$$
\int_{\gamma_{3}} \frac{\frac{z}{(z-3 i)(z+i)^{2}}}{\frac{(z+3 i)}{(z-(-3 i))}} d z=2 \pi i\left[\frac{(-3 i)}{(-3 i-3 i)(-3 i+i)^{2}}\right]=-\frac{\pi i}{4}
$$

ploy -3i into toe puts

$$
\begin{aligned}
& \int_{\gamma_{2}} \frac{z}{\frac{(z-3 i)(z+3 i)}{(z+i)^{2}}} d z \frac{f^{\prime}(z)=\frac{\left(z^{2}+9\right)-2 z^{2}}{\left(z^{2}+9\right)^{2}}=\frac{-z^{2}+9}{\left(z^{2}+9\right)^{2}}}{(z-(-i))^{2}} \frac{2 \pi i}{1!} f^{(1)}(-i)=2 \pi i\left[\frac{-(-i)^{2}+9}{\left((-i)^{2}+9\right)^{2}}\right]=2 \pi i\left[\frac{10}{64}\right] \\
& \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z=\frac{2 \pi i}{k!} f^{(k)}\left(z_{0}\right)
\end{aligned}
$$

f is analytic in and on γ

Answer is $-\frac{\pi i}{16}-\frac{\pi i}{4}+\frac{5 \pi i}{16}=0$

What if we modified it γ circle of radius 2 centered at o

$$
\begin{aligned}
& \int_{\gamma} \frac{z+1}{\left(z^{2}+1\right)(z+3 i)} d z \int_{\gamma}^{\left(z^{2}+1\right)(z+3 i)=}=(z+i)(z-i)(z+3 i) \\
&\left(z^{2}+1\right)(z+3 i) \\
&+\int_{\gamma_{1}} \frac{z+1}{\left(z^{2}+1\right)(z+3 i)} d z \\
&=\ldots \text { keep going... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \begin{array}{l}
\log (z)=\ln |z|+i \operatorname{acg}(z) \\
0 \leq \arg (z)<2 \pi
\end{array} \\
& R=\left\{r e^{i(3 \pi / 4)} \mid r \in \mathbb{Z}, r>0\right\}
\end{aligned}
$$

What does log do to this set?

$$
\begin{aligned}
& \log \left(r e^{i(3 \pi / 4)}\right) \\
& =\ln \left|r e^{i(3 \pi / 4)}\right|+i \arg \left(r e^{i(3 \pi / 4)}\right) \\
& =\ln |r|+i(3 \pi / 4) \\
& =\ln (r)+i(3 \pi / 4)
\end{aligned}
$$

Need to graph $\ln (r)+i(3 \pi / y)$ where $r>0$

We looked at HW $8 \# S(a)$

