Math 4680

$$
11 / 28 / 22
$$

$P \operatorname{lan}$	M	W
$11 / 28-$Finish final stuff	$11 / 30-$Not on final $12 / 5-$Not on final $12 / 12-$FINAL $12-2$	

Ex: Let γ be the circle $|z|=2$ oriented in the counter-clockwise direction. Evalute

$$
\int_{\gamma} \frac{z}{\left(9-z^{2}\right)(z+i)} d z
$$

$\frac{z}{\left(9-z^{2}\right)(z+i)}$ is analytic except when $\left(9-z^{2}\right)(z+i)=0$ which is at $z= \pm 3,-i$

$$
f(z)=z /\left(9-z^{2}\right) \quad \begin{aligned}
& f \text { is analytic } \\
& \text { on and } \\
& \text { inside } \gamma
\end{aligned}
$$

So,

Cauchy Integral the

$$
=2 \pi i\left(\frac{-i}{9-(-i)^{2}}\right)=\frac{-2 \pi i^{2}}{10}=\frac{\pi}{5}
$$

Ex: Calculate $\int_{\gamma} \frac{z^{2}-1}{z^{2}+1} d z$ where γ is
the circle of radius 2 centered at 0 , oriented counter-cleck wise.
Note: $\frac{z^{2}-1}{z^{2}+1}$ is analytic everywhere except when $z^{2}+1=0$ which is when

$$
z= \pm i .
$$

Let γ_{1} be the circle centered at i with radius $1 / 2$ and γ_{2} be the circle centered at $-i$ with radius $\downarrow 1 / 2$, both have oriented counter-clockwise.
Then $\frac{z^{2}-1}{z^{2}+1}$ is analytic on $\gamma, \gamma_{1}, \gamma_{2}$ and between γ and γ_{1}, γ_{2}.
So,

$$
\begin{aligned}
& \int_{\gamma} \frac{z^{2}-1}{z^{2}+1} d z=\int_{\gamma_{1}} \frac{z^{2}-1}{z^{2}+1} d z+\int_{\gamma_{2}} \frac{z^{2}-1}{z^{2}+1} d z \\
& \frac{z^{2}-1}{(z+i)(z-i)}=\int_{\gamma_{1}} \frac{\left(z^{2}-1\right) /(z+i)}{(z-i)} d z+\int_{\gamma_{2}}^{(z-(-i))} \frac{(z-i)}{(z-1)} d z
\end{aligned}
$$

$$
=2 \pi i\left[\frac{(i)^{2}-1}{(i+i)}\right]+2 \pi i\left[\frac{(-i)^{2}-1}{(-i-i)}\right]
$$

Cauchy integral
formula magic

$$
\begin{aligned}
& =2 \pi i\left[\frac{-2}{2 i}\right]+2 \pi i\left[\frac{-2}{-2 i}\right] \\
& =-2 \pi+2 \pi=0
\end{aligned}
$$

Ex: Let γ be the unit circle, oriented counterclockwise.
Evaluate $\int_{\gamma} \frac{e^{2 z}}{z^{4}} d z$.
$\frac{e^{2 z}}{z^{4}}$ is analytic everywhere except at $z=0$.
So, $\int_{\gamma} \frac{e^{2 z}}{z^{4}} d z=\int_{\gamma} \frac{e^{2 z}}{(z-0)^{4}} d z=\frac{2 \pi(z)=e^{2 z}}{\bar{p}} \frac{2 \pi f^{(3)}(0)}{3!}$

$$
\begin{aligned}
& f(z)=e^{2 z} \\
& f^{\prime}(z)=2 e^{2 z} \\
& f^{\prime \prime}(z)=4 e^{2 z} \\
& f^{\prime \prime \prime}(z)=8 e^{2 z}
\end{aligned}=\frac{2 \pi i}{6} 8 e^{2(0)}=\frac{8}{3} \pi i
$$

f is analytic on γ and inside γ
Use Cavehy-integral

Topic 11-More cool theorems

Theorem: Let $A \subseteq \mathbb{C}$ be an open set and $f: A \rightarrow \mathbb{C}$ is analytic on A.
Then, $f^{(k)}$ exists and is also analytic on A for all $k \geqslant 1$.
[$f^{(k)}$ means the k-th derivative]
proof: We will show first that $f^{(k)}$ exists at all points in A.
Let $z_{0} \in A$.
Since A is open, there exists $r>0$ where $D\left(z_{0} ; r\right) \subseteq A$.
Pick $0<\rho<r$.
[For example, $p=\frac{r}{2}$ works.]

Let γ be a circle of radius p centered at
Since γ is inside $D\left(z_{0} ; r\right)$ we know γ is interior to A.

Then, f is analytic inside and on γ. By the Cauchy-integral formula,

$$
f^{(k)}\left(z_{0}\right)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z
$$

So, $f^{(k)}$ exists at all points in A for $k \geqslant 1$. And $f^{(k)}$ is analytic on A because $f^{(k+1)}$ exists on A.

Morera's Theorem Let $A \subseteq \mathbb{C}$ be a region (open and path connected) and $f: A \rightarrow \mathbb{C}$ be continuous on A.
If $\int_{T} f=0$ for every triangular path T in A, then f is analytic in A.

Proof:
See online notes

