Math 4680 11/28/22

Plan M	\mathcal{M}
11/28 - Finish final stuff	"/30- Not on final
12/5- Not on final	12/7 - Review Jay
12/12- FINAL 12-2	

$$\frac{Ex}{(q-z^2)(z+i)} = \int_{\chi} \frac{(z-i)^2}{(q-z^2)(z+i)} dz$$

$$= 2\pi i \left(\frac{-i}{(q-z^2)(z+i)}\right) = \frac{(z+i)^2}{(z-i)^2} = \frac{1}{2}$$

$$= 2\pi i \left(\frac{-i}{(q-z^2)(z+i)}\right) = \frac{1}{2}$$

Ex: Calculate
$$\int_{X} \frac{z^2-1}{z^2+1} dz$$
 where X is
the circle of radius 2 centered at 0, oriented
Noke: $\frac{z^2-1}{z^2+1}$ is analytic
everywhere except when
 $z^2+1=0$ which is when
 $z=\pm \bar{\lambda}$.
Let \tilde{V}_1 be the circle centered at
 \tilde{V}_2 be the head \tilde{V}_2 and \tilde{V}_2 be
the circle centered at $-\lambda$ with radius V_2 be the head
oriented counter-clockwise.
Then $\frac{z^2-1}{z^2+1}$ is analytic on $\tilde{V}_1\tilde{V}_1$, \tilde{V}_2 and between
 \tilde{V} and \tilde{V}_1 , \tilde{V}_2 .
So $\int_{1}^{2^2-1} \frac{z^2-1}{z^2+1} dz = \int_{1}^{2^2-1} \frac{z^2-1}{z^2+1} dz + \int_{2}^{2^2-1} \frac{z^2-1}{z^2+1} dz$
 \tilde{V}_1 \tilde{V}_2 .
 \tilde{V}_1 \tilde{V}_2 \tilde{V}_3 \tilde{V}_4 \tilde{V}_4 \tilde{V}_4 \tilde{V}_4 \tilde{V}_5 \tilde{V}_5

$$= 2\pi i \left[\frac{(i)^2 - 1}{(i + i)} \right] + 2\pi i \left[\frac{(-i)^2 - 1}{(-i - i)} \right]$$

Cauchy integral
formula magic
$$= 2\pi i \left[\frac{-2}{2i} \right] + 2\pi i \left[\frac{-2}{-2i} \right]$$

$$= -2\pi + 2\pi = 0$$

$$\frac{E_{X:}}{E_{X:}} \text{ Let } Y \text{ be the unit circle, oriented}$$

$$countenclockwise.$$

$$E_{Valuate} \int_{\mathcal{B}} \frac{e^{22}}{z^{4}} dz .$$

$$\frac{e^{22}}{z^{4}} \text{ is analytic everywhere}$$

$$e_{X:cept} \text{ at } z = 0.$$

$$So_{j} \int \frac{e^{22}}{z^{4}} dz = \int \frac{e^{22}}{(z-0)^{4}} dz = \frac{2\pi\lambda}{3!} f^{(3)}(0)$$

$$f(z) = 2e^{22}$$

$$f'(z) = 2e^{22}$$

$$f'(z) = 4e^{22}$$

$$f''(z) = 8e^{22}$$

$$= \frac{2\pi\lambda}{6} 8e^{2(0)} = \frac{8}{3}\pi\lambda$$

Topic II- More cool theorems NOT ON FINAL

Theorem: Let ASC be an open set and $f: A \rightarrow \mathbb{C}$ is analytic on A. Then, f^(k) exists and is also analytic on A for all k>1. [f^(k) means the k-th derivative] <u>Proof</u>: We will show first that f^(k) exists at all points in A. D(2.571 Let Z.EA. Since A is open, there exists DDD when exists r>0 where $D(z_0; r) \leq A$. Pick O<P<r. [For example, $p = \frac{r}{2}$ works.] Let & be a circle of radius p centered at IZ. Since & is inside D(Zo;r) we know O is interior to A.

Then, f is analytic inside and on
$$\mathcal{X}$$
.
By the Cauchy-integral formula,
 $f^{(k)}(z_0) = \frac{k!}{2\pi i} \int \frac{f(z)}{(z-z_0)^{k+1}} dz$
So, $f^{(k)}$ exists at all points in A for $k \ge 1$.

And fth is analytic on A exists on A.

Morera's Theorem Let ASI be a region (open and path connected) and f: A -> C be continuous on A. If (f=0 for every triangular Path T in A, then f Α. analytic in Ploof: See online notes