Math 4680

$$
11 / 16 / 22
$$

Theorem: Suppose that γ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ are simple, closed, piecewise smooth curves such that
(a) γ is oriented counterclockwise
(b) $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ are all oriented counterclockwise, are all interior to γ, and the interiors of $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ have no points in common.
If f is analytic throughout the closed set consisting of all points within and on γ except for points interior to any γ_{k}, then

$$
\int_{\gamma} f=\sum_{k=1}^{n} \int_{\gamma_{k}} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f+\ldots+\int_{\gamma_{k}} f
$$

$n=2$ picture

$$
\int_{\gamma} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f
$$

$$
\int_{\gamma} f=\int_{\gamma_{1}} f
$$

Make the lines $L_{1}, L_{2}, \ldots, L_{n+1}$ as in the picture on the left. And consider $-\gamma_{k}$ as shown.

Let Γ_{1} be the top curve and Γ_{2} be the bottom curve

By Cauchy's theorem

$$
\int_{\Gamma_{1}} f=0
$$

and

$$
\int_{\Gamma_{2}} f=0
$$

$n=2$ picture

Thus,

$$
\begin{aligned}
O & =\int_{\Gamma_{1}} f+\int_{\Gamma_{2}} f=\int_{\Gamma_{1}+\Gamma_{2}} f \\
& =\int_{\gamma} f+\sum_{k=1}^{n} \int_{-\gamma_{k}} f \\
\begin{array}{c}
\text { Lines } \\
L_{k} \\
\text { cancel } \\
\text { each } \\
\text { other }
\end{array} & =\int_{\gamma} f-\sum_{k=1}^{n} \int_{\gamma_{k}} f
\end{aligned}
$$

So, $0=\int_{\gamma} f-\sum_{k=1}^{n} \int_{\gamma_{k}} f$.
Thus, $\int_{\gamma} f=\sum_{k=1}^{n} \int_{\gamma_{k}} f$.

Theorem: (Cauchy Integral Formula Let f be analytic everywhere within and on a simple, closed, piecewise smooth curve γ, where γ is oriented in the counterclockwise direction. If z_{0} is any point interior to γ then

$$
\begin{array}{r}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z \\
\begin{array}{c}
f \text { is } \\
\text { andytic in } \\
\text { and on } \gamma
\end{array}
\end{array}
$$

proof:
Let z_{0} be a point interior to γ. Let $\varepsilon>0$ be fixed.
Since f is continuous at z_{0}, there $\} \quad \lim _{z \rightarrow z_{0}}$ exists $\delta>0$ where if $\left|z-z_{0}\right|<\delta$ and z is in the domain of f, then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$.

By the Jordan-curve theorem, the interior of γ is open. Thus there exists $p>0$ where the circle $\left|z-z_{0}\right|=\rho$ is interior to γ. Choose ρ such that $\rho<\delta$.

Let γ_{0} denote the circle

$$
\left|z-z_{0}\right|=p
$$

oriented counterclockwise.

Since $\frac{f(z)}{z-z_{0}}$ is analytic on γ, in between
γ and γ_{0}, and on γ_{0}, by the previuss theorem we have

$$
\int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\int_{\gamma_{0}} \frac{f(z)}{z-z_{0}} d z
$$

Thus,

$$
\begin{aligned}
& \int_{\gamma} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right) \\
= & \int_{\gamma_{0}} \frac{f(z)}{z-z_{0}} d z-f\left(z_{0}\right) \int_{\gamma_{0}} \frac{d z}{z-z_{0}}
\end{aligned}
$$

from above earlier result this is $2 \pi i$

$$
=\int_{\gamma_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

The arclength of γ_{0} is $2 \pi \rho$.
Thus, $\left|\int_{\gamma_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|<\frac{\varepsilon}{\rho} \cdot \underbrace{\text { of }}_{\text {and }}$

$$
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon
$$

and $\left|z-z_{0}\right|=\rho$. So if z is on γ_{0} the $\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|<\frac{\varepsilon}{\rho}$

Thus,

$$
\begin{aligned}
& \left|\int_{\gamma} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)\right| \\
= & \left|\int_{\gamma_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|<\frac{\varepsilon}{\rho} \cdot 2 \pi \rho=2 \pi \varepsilon .
\end{aligned}
$$

Thus, $\left|\int_{\gamma} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)\right|$ is smaller than any positive number since ε can be any positive number.
Thus, $\left|\int_{\gamma} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)\right|=0$.
So, $\int_{\gamma} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$

Theorem: (Generalized Cauchy Integral Theorem) Let f be analytic everywhere within a simple, closed, piecewise smooth curve γ.
Let γ be oriented counter clockwise.
If z_{0} is any point interior to γ, then f is infinitely differentiable at z_{0} and

Proof: See notes or Hoffman/Marsden book.

