The Strong Chromatic Index of Cubic Halin Graphs

Ko-Wei Lih*
Institute of Mathematics
Academia Sinica
Taipei 10617, Taiwan
Email:makwlih@sinica.edu.tw

Daphne Der-Fen Liu
Department of Mathematics
California State University, Los Angeles
Los Angeles, CA 90032, U. S. A.
Email:dliu@calstatela.edu

April 19, 2011

Abstract

A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are incident to a common edge or share an endpoint. The strong chromatic index of a graph G, denoted $s \chi^{\prime}(G)$, is the minimum number of colors needed for a strong edge coloring of G. A Halin graph G is a plane graph constructed from a tree T without vertices of degree two by connecting all leaves through a cycle C. If a cubic Halin graph G is different from two particular graphs $N e_{2}$ and $N e_{4}$, then we prove $s \chi^{\prime}(G) \leqslant 7$. This solves a conjecture proposed in W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754-758.

Keywords: Strong edge coloring; Strong chromatic index; Halin graph.

1 Introduction

For a graph G with vertex set $V(G)$ and edge set $E(G)$, the line graph $L(G)$ of G is the graph on the vertex set $E(G)$ such that two vertices in $L(G)$ are defined to be adjacent if and only if their corresponding edges in G share a common endpoint. The distance between two edges in G is defined to be their distance in $L(G)$. A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are within distance two. Thus, two edges are colored with different colors if they are incident to a common edge or share an endpoint. An induced matching in a graph G is the edge set of an induced subgraph of G that is also a matching. A strong edge coloring can be equivalently defined as a partition of edges into induced

[^0]matchings. The strong chromatic index of G, denoted $s \chi^{\prime}(G)$, is the minimum number of colors needed for a strong edge coloring of G.

The strong edge coloring problem is NP-complete even for bipartite graphs with girth at least $4([7])$. However, polynomial time algorithms have been obtained for chordal graphs ([2]), co-comparability graphs ([5]), and partial k-trees ([8]).

The maximum of the degree $\operatorname{deg}(v)$ over all $v \in V(G)$ is written as $\Delta(G)$, or Δ when no ambiguities arise. The following outstanding conjecture was proposed by Faudree et al. [4], refining an upper bound given by Erdős and Nešetřil [3].

Conjecture 1 For any graph G with maximum degree Δ,

$$
s \chi^{\prime}(G) \leqslant \begin{cases}\frac{5}{4} \Delta^{2} & \text { if } \Delta \text { is even }, \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4} & \text { if } \Delta \text { is odd. }\end{cases}
$$

It is straightforward to see that Conjecture 1 holds when $\Delta \leqslant 2$. Conjecture 1 was proved to be true for $\Delta=3$ by Andersen [1] and, independently, by Horák et al. [6]. It remains open when $\Delta \geqslant 4$.

A Halin graph is a plane graph G constructed as follows. Let T be a tree having at least 4 vertices, called the characteristic tree of G. All vertices of T are either of degree 1 , called leaves, or of degree at least 3 . Let C be a cycle, called the adjoint cycle of G, connecting all leaves of T in such a way that C forms the boundary of the unbounded face. We usually write $G=T \cup C$ to reveal the characteristic tree and the adjoint cycle.

For $n \geqslant 3$, the wheel W_{n} is a particular Halin graph whose characteristic tree is the complete bipartite graph $K_{1, n}$. A graph is said to be cubic if the degree of every vertex is 3 . For $h \geqslant 1$, a cubic Halin graph $N e_{h}$, called a necklace, was constructed in [9]. Its characteristic tree T_{h} consists of the path $v_{0}, v_{1}, \ldots, v_{h}, v_{h+1}$ and leaves $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{h}^{\prime}$ such that the unique neighbor of v_{i}^{\prime} in T_{h} is v_{i} for $1 \leqslant i \leqslant h$ and vertices $v_{0}, v_{1}^{\prime}, \ldots, v_{h}^{\prime}, v_{h+1}$ are in order to form the adjoint cycle C_{h+2}. The strong chromatic index of a cubic Halin graph is easily seen to be at least 6 . The following upper bound was conjectured in Shiu and Tam [10].

Conjecture 2 If G is a cubic Halin graph that is different from any necklace, then $s \chi^{\prime}(G) \leqslant 7$.

We shall prove the validity of this conjecture.

2 Main result

Since the line graph of a cycle C_{n} of n vertices is C_{n} itself and any edge of the characteristic tree of a wheel is within distance 2 to any edge of the adjoint cycle, it is straightforward to obtain the following two lemmas.

Lemma 3 For the cycle C_{n}, we have

$$
s \chi^{\prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0 \\ 5 & \text { if } n=5 \\ 4 & \text { otherwise }\end{cases}
$$

Lemma 4 For the wheel W_{n}, we have

$$
s \chi^{\prime}\left(W_{n}\right)=\left\{\begin{array}{ll}
n+3 & \text { if } n \equiv 0 \\
n+5 & \text { if } n=5 \\
n+4 & \text { otherwise }
\end{array} \quad(\bmod 3)\right.
$$

The strong chromatic index of a necklace was determined in [9] as follows.
Lemma 5 Suppose $h \geqslant 1$.

$$
s \chi^{\prime}\left(N e_{h}\right)= \begin{cases}6 & \text { if } h \text { is odd } \\ 7 & \text { if } h \geqslant 6 \text { and is even }, \\ 8 & \text { if } h=4, \\ 9 & \text { if } h=2\end{cases}
$$

Theorem 6 If a cubic Halin graph $G=T \cup C$ is different from $N e_{2}$ and $N e_{4}$, then $s \chi^{\prime}(G) \leqslant 7$.

Proof. We prove the theorem by induction on the length m of the adjoint cycle C. It is easy to see that the only cubic Halin graphs with $m=3,4$, and 5 are $W_{3}, N e_{2}$, and $N e_{3}$, respectively. They all satisfy our theorem by Lemmas 4 and 5 . Now assume $m \geqslant 6$.

In our later inductive steps, we use two basic operations to reduce a cubic Halin graph G to another cubic Halin graph G^{\prime} such that the length of the adjoint cycle of G^{\prime} is shorter than that of G. If G^{\prime} is equal to neither $N e_{2}$ nor $N e_{4}$, then $s \chi^{\prime}\left(G^{\prime}\right) \leqslant 7$ by the induction hypothesis. Otherwise, up to symmetry, G belongs to a list of eleven cubic Halin graphs, each of which can have a strong edge coloring using at most seven colors. All such colorings are supplied in Figure 4 in the Appendix.

Let $P: u_{0}, u_{1}, \ldots, u_{l}, l \geqslant 5$, be a longest path in T. Since P is of maximum length, all neighbors of u_{1}, except u_{2}, are leaves. We may change notation to let $w=u_{3}, u=u_{2}$, $v=u_{1}$, and v_{1} and v_{2}, be the neighbors of v on C as depicted in Figure 1.

Since $\operatorname{deg}(u)=3$, there exists a path Q from u to x_{1} or y_{1} with $P \cap Q=\{u\}$. Without loss of generality, we may assume that Q is a path from u to y_{1}. Since P is a longest path in T, Q has length at most two. It follows that $u y_{3} \in E(T)$ or $u=y_{3}$. The former implies $y_{2} y_{3} \in E(T)$ and the latter means $u y_{1} \in E(T)$.

Case 1. $u y_{3} \in E(T)$.
Consider Figure 2. Now let G^{\prime} be the graph obtained from G by deleting v, v_{1}, v_{2}, y_{1}, y_{2}, y_{3}, and adding two new edges $u x_{1}$ and $u z$. By the induction hypothesis, we may assume that there exists a strong edge coloring f for $E\left(G^{\prime}\right)$ using colors from the set

Figure 1: Around the end of a longest path in the characteristic tree.

Figure 2: The case $u y_{3} \in E(T)$.
$[7]=\{1,2, \ldots, 7\}$. Without loss of generality, we assume that $f(w u)=1, f\left(u x_{1}\right)=2$, $f(u z)=3$. Except the edge $u x_{1}$, let the other two edges in G^{\prime} incident to x_{1} be colored with t_{1} and t_{2}. Except the edge $u z$, let the other two edges in G^{\prime} incident to z be colored with s_{1} and s_{2}. Note that $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \cap\{1,2,3\}=\emptyset$. Now we shall extend f to the remaining edges of G to get a strong edge coloring using seven colors. We first let $f\left(v_{2} y_{1}\right)=1, f\left(u y_{3}\right)=f\left(x_{1} v_{1}\right)=2$ and $f(u v)=f\left(y_{2} z\right)=3$.

Subcase $1\left\{s_{1}, s_{2}\right\}=\left\{t_{1}, t_{2}\right\}$.
Let $\{\alpha, \beta\}=[7] \backslash\left\{1,2,3, t_{1}, t_{2}\right\}$. Let $f\left(v v_{2}\right)=t_{1}, f\left(y_{1} y_{3}\right)=t_{2}, f\left(v v_{1}\right)=f\left(y_{1} y_{2}\right)=\alpha$, $f\left(v_{1} v_{2}\right)=f\left(y_{2} y_{3}\right)=\beta$.

Subcase $2\left\{s_{1}, s_{2}\right\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$.
Let $f\left(v v_{2}\right)=f\left(y_{2} y_{3}\right)=t_{1}, f\left(y_{1} y_{2}\right)=t_{2}, f\left(v v_{1}\right)=f\left(y_{1} y_{3}\right)=s_{1}, f\left(v_{1} v_{2}\right)=s_{2}$.
Subcase $3 \quad s_{1}=t_{1}$ and $s_{2} \neq t_{2}$.
Let $\{\alpha\}=[7] \backslash\left\{1,2,3, s_{1}, s_{2}, t_{2}\right\}$. Let $f\left(v v_{2}\right)=s_{1}, f\left(v v_{1}\right)=f\left(y_{1} y_{3}\right)=s_{2}, f\left(y_{1} y_{2}\right)=$ $t_{2}, f\left(v_{1} v_{2}\right)=f\left(y_{2} y_{3}\right)=\alpha$.

Figure 3: The case $u=y_{3}$.

Case 2. $u=y_{3}$.
Consider Figure 3. Let G^{\prime} be the graph obtained from G by deleting v, v_{1}, v_{2}, y_{1}, and adding two new edges $u x_{1}$ and $u y_{2}$. By the induction hypothesis, we may assume that there exists a strong edge coloring f for $E\left(G^{\prime}\right)$ using colors from the set [7]. Without loss of generality, assume that $f\left(u x_{1}\right)=1, f\left(u y_{2}\right)=2, f(u w)=3, f\left(x_{1} x_{2}\right)=4$, and $f\left(x_{1} x_{3}\right)=5$. Except the edge $u w$, let the other two edges in G^{\prime} incident to w be colored with t_{1} and t_{2}. Except the edge $v y_{2}$, let the other two edges in G^{\prime} incident to y_{2} be colored with s_{1} and s_{2}. Note that $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \cap\{1,2,3\}=\emptyset$. Now we shall extend f to the remaining edges of G to get a strong edge coloring using seven colors. We first let $f\left(x_{1} v_{1}\right)=f\left(u y_{1}\right)=1, f\left(v v_{1}\right)=f\left(y_{1} y_{2}\right)=2$, and $f\left(v_{1} v_{2}\right)=3$. There are five colors $1,2,3, t_{1}, t_{2}$ forbidden for the edge $u v$, hence $f(u v)$ can be defined. Next, there are at most six colors $1,2,3, s_{1}, s_{2}, f(u v)$ forbidden for the edge $v_{2} y_{1}$, hence $f\left(v_{2} y_{1}\right)$ can be defined. Finally, there are five colors $1,2,3, f(u v), f\left(v_{2} y_{1}\right)$ forbidden for the edge $v v_{2}$, hence $f\left(v v_{2}\right)$ can be defined.

Appendix

Figure 4 is a list of eleven basic graphs each of which is depicted with a strong edge coloring using seven colors. The white vertices of a graph are to be deleted during the inductive step so that the reduced graph becomes $N e_{2}$ or $N e_{4}$.

References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231-252.
[2] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97-102.
[3] P. Erdős, J. Nešetřil, [Problem], in G. Halász, V. T. Sós (Eds.), Irregularities of Partitions, Springer, Berlin, 1989, 162-163.
[4] R. J. Faudree, R. H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211.
[5] M. C. Golumbic, M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157-165.
[6] P. Horák, H. Qing, W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151-160.
[7] M. Mahdian, On the computational complexity of strong edge coloring, Discrete Appl. Math. 118 (2002) 239-248.
[8] M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Appl. Math. 143 (2004) 285-291.
[9] W. C. Shiu, P. C. B. Lam, W. K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211-222.
[10] W. C. Shiu, W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754-758.

Figure 4: Eleven basic cubic Halin graphs.

Figure 4: Eleven basic cubic Halin graphs.

[^0]: *Supported in part by the National Science Council under grant NSC99-2115-M-001-004-MY3.

