# The Strong Chromatic Index of Cubic Halin Graphs

Ko-Wei Lih\* Institute of Mathematics Academia Sinica Taipei 10617, Taiwan Email:makwlih@sinica.edu.tw Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, U. S. A. Email:dliu@calstatela.edu

April 19, 2011

#### Abstract

A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are incident to a common edge or share an endpoint. The strong chromatic index of a graph G, denoted  $s\chi'(G)$ , is the minimum number of colors needed for a strong edge coloring of G. A Halin graph G is a plane graph constructed from a tree T without vertices of degree two by connecting all leaves through a cycle C. If a cubic Halin graph G is different from two particular graphs  $Ne_2$  and  $Ne_4$ , then we prove  $s\chi'(G) \leq 7$ . This solves a conjecture proposed in W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754–758.

Keywords: Strong edge coloring; Strong chromatic index; Halin graph.

#### 1 Introduction

For a graph G with vertex set V(G) and edge set E(G), the line graph L(G) of G is the graph on the vertex set E(G) such that two vertices in L(G) are defined to be adjacent if and only if their corresponding edges in G share a common endpoint. The distance between two edges in G is defined to be their distance in L(G). A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are within distance two. Thus, two edges are colored with different colors if they are incident to a common edge or share an endpoint. An induced matching in a graph G is the edge set of an induced subgraph of G that is also a matching. A strong edge coloring can be equivalently defined as a partition of edges into induced

<sup>\*</sup>Supported in part by the National Science Council under grant NSC99-2115-M-001-004-MY3.

matchings. The strong chromatic index of G, denoted  $s\chi'(G)$ , is the minimum number of colors needed for a strong edge coloring of G.

The strong edge coloring problem is NP-complete even for bipartite graphs with girth at least 4 ([7]). However, polynomial time algorithms have been obtained for chordal graphs ([2]), co-comparability graphs ([5]), and partial k-trees ([8]).

The maximum of the degree  $\deg(v)$  over all  $v \in V(G)$  is written as  $\Delta(G)$ , or  $\Delta$  when no ambiguities arise. The following outstanding conjecture was proposed by Faudree et al. [4], refining an upper bound given by Erdős and Nešetřil [3].

**Conjecture 1** For any graph G with maximum degree  $\Delta$ ,

$$s\chi'(G) \leqslant \begin{cases} \frac{5}{4}\Delta^2 & \text{if } \Delta \text{ is even}, \\ \\ \frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4} & \text{if } \Delta \text{ is odd}. \end{cases}$$

It is straightforward to see that Conjecture 1 holds when  $\Delta \leq 2$ . Conjecture 1 was proved to be true for  $\Delta = 3$  by Andersen [1] and, independently, by Horák et al. [6]. It remains open when  $\Delta \geq 4$ .

A Halin graph is a plane graph G constructed as follows. Let T be a tree having at least 4 vertices, called the *characteristic tree* of G. All vertices of T are either of degree 1, called *leaves*, or of degree at least 3. Let C be a cycle, called the *adjoint cycle* of G, connecting all leaves of T in such a way that C forms the boundary of the unbounded face. We usually write  $G = T \cup C$  to reveal the characteristic tree and the adjoint cycle.

For  $n \ge 3$ , the wheel  $W_n$  is a particular Halin graph whose characteristic tree is the complete bipartite graph  $K_{1,n}$ . A graph is said to be *cubic* if the degree of every vertex is 3. For  $h \ge 1$ , a cubic Halin graph  $Ne_h$ , called a *necklace*, was constructed in [9]. Its characteristic tree  $T_h$  consists of the path  $v_0, v_1, \ldots, v_h, v_{h+1}$  and leaves  $v'_1, v'_2, \ldots, v'_h$  such that the unique neighbor of  $v'_i$  in  $T_h$  is  $v_i$  for  $1 \le i \le h$  and vertices  $v_0, v'_1, \ldots, v'_h, v_{h+1}$ are in order to form the adjoint cycle  $C_{h+2}$ . The strong chromatic index of a cubic Halin graph is easily seen to be at least 6. The following upper bound was conjectured in Shiu and Tam [10].

**Conjecture 2** If G is a cubic Halin graph that is different from any necklace, then  $s\chi'(G) \leq 7$ .

We shall prove the validity of this conjecture.

### 2 Main result

Since the line graph of a cycle  $C_n$  of n vertices is  $C_n$  itself and any edge of the characteristic tree of a wheel is within distance 2 to any edge of the adjoint cycle, it is straightforward to obtain the following two lemmas.

**Lemma 3** For the cycle  $C_n$ , we have

$$s\chi'(C_n) = \begin{cases} 3 & \text{if } n \equiv 0 \pmod{3}, \\ 5 & \text{if } n = 5, \\ 4 & \text{otherwise.} \end{cases}$$

**Lemma 4** For the wheel  $W_n$ , we have

$$s\chi'(W_n) = \begin{cases} n+3 & \text{if } n \equiv 0 \pmod{3} \\ n+5 & \text{if } n \equiv 5, \\ n+4 & \text{otherwise.} \end{cases}$$

The strong chromatic index of a necklace was determined in [9] as follows.

**Lemma 5** Suppose  $h \ge 1$ .

$$s\chi'(Ne_h) = \begin{cases} 6 & if \ h \ is \ odd, \\ 7 & if \ h \ge 6 \ and \ is \ even, \\ 8 & if \ h = 4, \\ 9 & if \ h = 2. \end{cases}$$

**Theorem 6** If a cubic Halin graph  $G = T \cup C$  is different from  $Ne_2$  and  $Ne_4$ , then  $s\chi'(G) \leq 7$ .

**Proof.** We prove the theorem by induction on the length m of the adjoint cycle C. It is easy to see that the only cubic Halin graphs with m = 3, 4, and 5 are  $W_3$ ,  $Ne_2$ , and  $Ne_3$ , respectively. They all satisfy our theorem by Lemmas 4 and 5. Now assume  $m \ge 6$ .

In our later inductive steps, we use two basic operations to reduce a cubic Halin graph G to another cubic Halin graph G' such that the length of the adjoint cycle of G' is shorter than that of G. If G' is equal to neither  $Ne_2$  nor  $Ne_4$ , then  $s\chi'(G') \leq 7$  by the induction hypothesis. Otherwise, up to symmetry, G belongs to a list of eleven cubic Halin graphs, each of which can have a strong edge coloring using at most seven colors. All such colorings are supplied in Figure 4 in the Appendix.

Let  $P: u_0, u_1, \ldots, u_l, l \ge 5$ , be a longest path in T. Since P is of maximum length, all neighbors of  $u_1$ , except  $u_2$ , are leaves. We may change notation to let  $w = u_3, u = u_2,$  $v = u_1$ , and  $v_1$  and  $v_2$ , be the neighbors of v on C as depicted in Figure 1.

Since deg(u) = 3, there exists a path Q from u to  $x_1$  or  $y_1$  with  $P \cap Q = \{u\}$ . Without loss of generality, we may assume that Q is a path from u to  $y_1$ . Since P is a longest path in T, Q has length at most two. It follows that  $uy_3 \in E(T)$  or  $u = y_3$ . The former implies  $y_2y_3 \in E(T)$  and the latter means  $uy_1 \in E(T)$ .

Case 1.  $uy_3 \in E(T)$ .

Consider Figure 2. Now let G' be the graph obtained from G by deleting v,  $v_1$ ,  $v_2$ ,  $y_1$ ,  $y_2$ ,  $y_3$ , and adding two new edges  $ux_1$  and uz. By the induction hypothesis, we may assume that there exists a strong edge coloring f for E(G') using colors from the set



Figure 1: Around the end of a longest path in the characteristic tree.



Figure 2: The case  $uy_3 \in E(T)$ .

 $[7] = \{1, 2, ..., 7\}$ . Without loss of generality, we assume that f(wu) = 1,  $f(ux_1) = 2$ , f(uz) = 3. Except the edge  $ux_1$ , let the other two edges in G' incident to  $x_1$  be colored with  $t_1$  and  $t_2$ . Except the edge uz, let the other two edges in G' incident to z be colored with  $s_1$  and  $s_2$ . Note that  $\{s_1, s_2, t_1, t_2\} \cap \{1, 2, 3\} = \emptyset$ . Now we shall extend f to the remaining edges of G to get a strong edge coloring using seven colors. We first let  $f(v_2y_1) = 1$ ,  $f(uy_3) = f(x_1v_1) = 2$  and  $f(uv) = f(y_2z) = 3$ .

Subcase 1  $\{s_1, s_2\} = \{t_1, t_2\}.$ 

Let  $\{\alpha, \beta\} = [7] \setminus \{1, 2, 3, t_1, t_2\}$ . Let  $f(vv_2) = t_1$ ,  $f(y_1y_3) = t_2$ ,  $f(vv_1) = f(y_1y_2) = \alpha$ ,  $f(v_1v_2) = f(y_2y_3) = \beta$ .

Subcase 2  $\{s_1, s_2\} \cap \{t_1, t_2\} = \emptyset$ . Let  $f(vv_2) = f(y_2y_3) = t_1$ ,  $f(y_1y_2) = t_2$ ,  $f(vv_1) = f(y_1y_3) = s_1$ ,  $f(v_1v_2) = s_2$ .

Subcase 3  $s_1 = t_1$  and  $s_2 \neq t_2$ .

Let  $\{\alpha\} = [7] \setminus \{1, 2, 3, s_1, s_2, t_2\}$ . Let  $f(vv_2) = s_1$ ,  $f(vv_1) = f(y_1y_3) = s_2$ ,  $f(y_1y_2) = t_2$ ,  $f(v_1v_2) = f(y_2y_3) = \alpha$ .



Figure 3: The case  $u = y_3$ .

Case 2.  $u = y_3$ .

Consider Figure 3. Let G' be the graph obtained from G by deleting  $v, v_1, v_2, y_1$ , and adding two new edges  $ux_1$  and  $uy_2$ . By the induction hypothesis, we may assume that there exists a strong edge coloring f for E(G') using colors from the set [7]. Without loss of generality, assume that  $f(ux_1) = 1$ ,  $f(uy_2) = 2$ , f(uw) = 3,  $f(x_1x_2) = 4$ , and  $f(x_1x_3) = 5$ . Except the edge uw, let the other two edges in G' incident to w be colored with  $t_1$  and  $t_2$ . Except the edge  $vy_2$ , let the other two edges in G' incident to  $y_2$  be colored with  $s_1$  and  $s_2$ . Note that  $\{s_1, s_2, t_1, t_2\} \cap \{1, 2, 3\} = \emptyset$ . Now we shall extend fto the remaining edges of G to get a strong edge coloring using seven colors. We first let  $f(x_1v_1) = f(uy_1) = 1$ ,  $f(vv_1) = f(y_1y_2) = 2$ , and  $f(v_1v_2) = 3$ . There are five colors  $1, 2, 3, t_1, t_2$  forbidden for the edge uv, hence f(uv) can be defined. Next, there are at most six colors  $1, 2, 3, s_1, s_2, f(uv)$  forbidden for the edge  $v_2y_1$ , hence  $f(v_2y_1)$  can be defined. Finally, there are five colors  $1, 2, 3, f(uv), f(v_2y_1)$  forbidden for the edge  $vv_2$ , hence  $f(vv_2)$ can be defined.

## Appendix

Figure 4 is a list of eleven basic graphs each of which is depicted with a strong edge coloring using seven colors. The white vertices of a graph are to be deleted during the inductive step so that the reduced graph becomes  $Ne_2$  or  $Ne_4$ .

#### References

 L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231–252.

- [2] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97–102.
- [3] P. Erdős, J. Nešetřil, [Problem], in G. Halász, V. T. Sós (Eds.), Irregularities of Partitions, Springer, Berlin, 1989, 162–163.
- [4] R. J. Faudree, R. H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211.
- [5] M. C. Golumbic, M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157–165.
- [6] P. Horák, H. Qing, W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151–160.
- [7] M. Mahdian, On the computational complexity of strong edge coloring, Discrete Appl. Math. 118 (2002) 239-248.
- [8] M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Appl. Math. 143 (2004) 285–291.
- W. C. Shiu, P. C. B. Lam, W. K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211–222.
- [10] W. C. Shiu, W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754–758.









Figure 4: Eleven basic cubic Halin graphs.











Figure 4: Eleven basic cubic Halin graphs.

8