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Abstract

A strong edge coloring of a graph G is an assignment of colors to the edges of G such
that two distinct edges are colored differently if they are incident to a common edge
or share an endpoint. The strong chromatic index of a graph G, denoted sχ′(G),
is the minimum number of colors needed for a strong edge coloring of G. A Halin
graph G is a plane graph constructed from a tree T without vertices of degree two
by connecting all leaves through a cycle C. If a cubic Halin graph G is different
from two particular graphs Ne2 and Ne4, then we prove sχ′(G) 6 7. This solves a
conjecture proposed in W. C. Shiu and W. K. Tam, The strong chromatic index of
complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754–758.
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1 Introduction

For a graph G with vertex set V (G) and edge set E(G), the line graph L(G) of G is the

graph on the vertex set E(G) such that two vertices in L(G) are defined to be adjacent

if and only if their corresponding edges in G share a common endpoint. The distance

between two edges in G is defined to be their distance in L(G). A strong edge coloring

of a graph G is an assignment of colors to the edges of G such that two distinct edges

are colored differently if they are within distance two. Thus, two edges are colored with

different colors if they are incident to a common edge or share an endpoint. An induced

matching in a graph G is the edge set of an induced subgraph of G that is also a matching.

A strong edge coloring can be equivalently defined as a partition of edges into induced
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matchings. The strong chromatic index of G, denoted sχ′(G), is the minimum number of

colors needed for a strong edge coloring of G.

The strong edge coloring problem is NP-complete even for bipartite graphs with girth

at least 4 ([7]). However, polynomial time algorithms have been obtained for chordal

graphs ([2]), co-comparability graphs ([5]), and partial k-trees ([8]).

The maximum of the degree deg(v) over all v ∈ V (G) is written as ∆(G), or ∆ when

no ambiguities arise. The following outstanding conjecture was proposed by Faudree et

al. [4], refining an upper bound given by Erdős and Nešetřil [3].

Conjecture 1 For any graph G with maximum degree ∆,

sχ′(G) 6


5
4
∆2 if ∆ is even,

5
4
∆2 − 1

2
∆ + 1

4
if ∆ is odd.

It is straightforward to see that Conjecture 1 holds when ∆ 6 2. Conjecture 1 was

proved to be true for ∆ = 3 by Andersen [1] and, independently, by Horák et al. [6]. It

remains open when ∆ > 4.

A Halin graph is a plane graph G constructed as follows. Let T be a tree having at

least 4 vertices, called the characteristic tree of G. All vertices of T are either of degree

1, called leaves, or of degree at least 3. Let C be a cycle, called the adjoint cycle of G,

connecting all leaves of T in such a way that C forms the boundary of the unbounded

face. We usually write G = T ∪ C to reveal the characteristic tree and the adjoint cycle.

For n > 3, the wheel Wn is a particular Halin graph whose characteristic tree is the

complete bipartite graph K1,n. A graph is said to be cubic if the degree of every vertex

is 3. For h > 1, a cubic Halin graph Neh, called a necklace, was constructed in [9]. Its

characteristic tree Th consists of the path v0, v1, . . . , vh, vh+1 and leaves v′1, v
′
2, . . . , v

′
h such

that the unique neighbor of v′i in Th is vi for 1 6 i 6 h and vertices v0, v
′
1, . . . , v

′
h, vh+1

are in order to form the adjoint cycle Ch+2. The strong chromatic index of a cubic Halin

graph is easily seen to be at least 6. The following upper bound was conjectured in Shiu

and Tam [10].

Conjecture 2 If G is a cubic Halin graph that is different from any necklace, then

sχ′(G) 6 7.

We shall prove the validity of this conjecture.

2 Main result

Since the line graph of a cycle Cn of n vertices is Cn itself and any edge of the characteristic

tree of a wheel is within distance 2 to any edge of the adjoint cycle, it is straightforward

to obtain the following two lemmas.
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Lemma 3 For the cycle Cn, we have

sχ′(Cn) =


3 if n ≡ 0 (mod 3),
5 if n = 5,
4 otherwise.

Lemma 4 For the wheel Wn, we have

sχ′(Wn) =


n+ 3 if n ≡ 0 (mod 3),
n+ 5 if n = 5,
n+ 4 otherwise.

The strong chromatic index of a necklace was determined in [9] as follows.

Lemma 5 Suppose h > 1.

sχ′(Neh) =


6 if h is odd,
7 if h > 6 and is even,
8 if h = 4,
9 if h = 2.

Theorem 6 If a cubic Halin graph G = T ∪ C is different from Ne2 and Ne4, then

sχ′(G) 6 7.

Proof. We prove the theorem by induction on the length m of the adjoint cycle C. It is

easy to see that the only cubic Halin graphs with m = 3, 4, and 5 are W3, Ne2, and Ne3,

respectively. They all satisfy our theorem by Lemmas 4 and 5. Now assume m > 6.

In our later inductive steps, we use two basic operations to reduce a cubic Halin

graph G to another cubic Halin graph G′ such that the length of the adjoint cycle of G′

is shorter than that of G. If G′ is equal to neither Ne2 nor Ne4, then sχ′(G′) 6 7 by

the induction hypothesis. Otherwise, up to symmetry, G belongs to a list of eleven cubic

Halin graphs, each of which can have a strong edge coloring using at most seven colors.

All such colorings are supplied in Figure 4 in the Appendix.

Let P : u0, u1, . . . , ul, l > 5, be a longest path in T . Since P is of maximum length,

all neighbors of u1, except u2, are leaves. We may change notation to let w = u3, u = u2,

v = u1, and v1 and v2, be the neighbors of v on C as depicted in Figure 1.

Since deg(u) = 3, there exists a path Q from u to x1 or y1 with P ∩Q = {u}. Without

loss of generality, we may assume that Q is a path from u to y1. Since P is a longest path

in T , Q has length at most two. It follows that uy3 ∈ E(T ) or u = y3. The former implies

y2y3 ∈ E(T ) and the latter means uy1 ∈ E(T ).

Case 1. uy3 ∈ E(T ).

Consider Figure 2. Now let G′ be the graph obtained from G by deleting v, v1, v2,

y1, y2, y3, and adding two new edges ux1 and uz. By the induction hypothesis, we may

assume that there exists a strong edge coloring f for E(G′) using colors from the set

3



u

vx3 y3

x2 x1 v1 v2 y1 y2

w

Figure 1: Around the end of a longest path in the characteristic tree.

w

vx3 y3

x2 x1 v1 v2 y1 y2

u

z

Figure 2: The case uy3 ∈ E(T ).

[7] = {1, 2, . . . , 7}. Without loss of generality, we assume that f(wu) = 1, f(ux1) = 2,

f(uz) = 3. Except the edge ux1, let the other two edges in G′ incident to x1 be colored

with t1 and t2. Except the edge uz, let the other two edges in G′ incident to z be

colored with s1 and s2. Note that {s1, s2, t1, t2} ∩ {1, 2, 3} = ∅. Now we shall extend f

to the remaining edges of G to get a strong edge coloring using seven colors. We first let

f(v2y1) = 1, f(uy3) = f(x1v1) = 2 and f(uv) = f(y2z) = 3.

Subcase 1 {s1, s2} = {t1, t2}.
Let {α, β} = [7]\{1, 2, 3, t1, t2}. Let f(vv2) = t1, f(y1y3) = t2, f(vv1) = f(y1y2) = α,

f(v1v2) = f(y2y3) = β.

Subcase 2 {s1, s2} ∩ {t1, t2} = ∅.
Let f(vv2) = f(y2y3) = t1, f(y1y2) = t2, f(vv1) = f(y1y3) = s1, f(v1v2) = s2.

Subcase 3 s1 = t1 and s2 6= t2.

Let {α} = [7] \ {1, 2, 3, s1, s2, t2}. Let f(vv2) = s1, f(vv1) = f(y1y3) = s2, f(y1y2) =

t2, f(v1v2) = f(y2y3) = α.
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Figure 3: The case u = y3.

Case 2. u = y3.

Consider Figure 3. Let G′ be the graph obtained from G by deleting v, v1, v2, y1,

and adding two new edges ux1 and uy2. By the induction hypothesis, we may assume

that there exists a strong edge coloring f for E(G′) using colors from the set [7]. Without

loss of generality, assume that f(ux1) = 1, f(uy2) = 2, f(uw) = 3, f(x1x2) = 4, and

f(x1x3) = 5. Except the edge uw, let the other two edges in G′ incident to w be colored

with t1 and t2. Except the edge vy2, let the other two edges in G′ incident to y2 be

colored with s1 and s2. Note that {s1, s2, t1, t2} ∩ {1, 2, 3} = ∅. Now we shall extend f

to the remaining edges of G to get a strong edge coloring using seven colors. We first

let f(x1v1) = f(uy1) = 1, f(vv1) = f(y1y2) = 2, and f(v1v2) = 3. There are five colors

1, 2, 3, t1, t2 forbidden for the edge uv, hence f(uv) can be defined. Next, there are at most

six colors 1, 2, 3, s1, s2, f(uv) forbidden for the edge v2y1, hence f(v2y1) can be defined.

Finally, there are five colors 1, 2, 3, f(uv), f(v2y1) forbidden for the edge vv2, hence f(vv2)

can be defined.

Appendix

Figure 4 is a list of eleven basic graphs each of which is depicted with a strong edge

coloring using seven colors. The white vertices of a graph are to be deleted during the

inductive step so that the reduced graph becomes Ne2 or Ne4.
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Figure 4: Eleven basic cubic Halin graphs.
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Figure 4: Eleven basic cubic Halin graphs.
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