LABORATORY MANUAL ELECTRONICS LABORATORY II EE 3709

© DR F. Daneshgaran, DR S. SOCLOF November 16, 2016

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING CALIFORNIA STATE UNIVERSITY, LOS ANGELES

TABLE OF CONTENTS

REFERENCE	•••••
USEFUL KEYBOARD SHORTCUTS FOR MICRO-CAP	3
COMMON-EMITTER AMPLIFIER	•••••
1.1 D-C VOLTAGES	
1.2 Output Voltage and Voltage Gain	
1.3 Frequency Response	6
1.4 EFFECT OF SIGNAL SOURCE RESISTANCE ON VOLTAGE GAIN	7
1.5 EFFECT OF SIGNAL SOURCE RESISTANCE ON VOLTAGE GAIN	9
1.6 TIME-DOMAIN RESPONSE TO A PULSE INPUT	10
1.7 EFFECT OF RS ON THE TIME-DOMAIN RESPONSE TO A PULSE INPUT	12
CASCADED AMPLIFIERS	•••••
2.1 EFFECT OF INPUT SIGNAL LEVEL ON TWO-STAGE CASCADED AMPLIFIER	14
2.2 FREQUENCY RESPONSE TWO-STAGE CASCADED AMPLIFIER	16
2.3 EFFECT OF LOAD RESISTANCE ON VOLTAGE GAIN	17
2.4 VOLTAGE GAIN AND EFFECT OF THE INPUT SIGNAL LEVEL	18
2.5 VOLTAGE GAIN WITH AND WITHOUT THE DARLINGTON EMITTER-FOLLOWER	20
PUSH-PULL CIRCUITS	•••••
3.1 Push-Pull Circuit	22
3.2 VOLTAGE TRANSFER CURVE	24
3.3 MINIMIZING CROSSOVER DISTORTION	26
3.4 MINIMIZING CROSSOVER DISTORTION VOLTAGE TRANSFER CURVE	28
3.5 DARLINGTON EMITTER-FOLLOWERS	29
3.6 DARLINGTON EMITTER-FOLLOWERS VOLTAGE TRANSFER CURVES	31
3.7 DARLINGTON EMITTER-FOLLOWERS COMPARISON OF CIRCUIT WITH AND WITHOUT DIODES	32
3.8 DARLINGTON EMITTER-FOLLOWERS COMPARISON OF CIRCUIT – VOLTAGE TRANSFER	34
3.9 AMPLIFIER WITH PUSH-PULL CIRCUIT OUTPUT STAGE CURVES	35
OPERATIONAL AMPLIFIERS	•••••
4.1 Open-Loop Transfer Curves	37
4.2 CLOSED-LOOP TRANSFER CURVES	39
4.3 CLOSED-LOOP TRANSFER CURVES EFFECT OF V+ SUPPLY VOLTAGE	41
4.4 CLOSED-LOOP TRANSFER CURVES EFFECT OF V- SUPPLY VOLTAGE	43
4.5 OUTPUT VOLTAGE VERSUS TIME RISE & FALL TIMES	45
4.6 CURRENT LIMITING	47
4.7 PRECISION HALF-WAVE RECTIFIER	50
4.8 PRECISION FULL-WAVE RECTIFIER	55
4.9 CLOSED-LOOP SLEWING RATE - SQUARE- WAVE INPUT	55
4.10 CLOSED-LOOP SLEWING RATE – SINE- WAVE INPUT	50
4.11 CLOSED-LOOP SLEWING RATE – LIFECT OF SINE WAVE AMPLITUDE	
4 13 SOLARE-WAVE OSCILLATOR 680 H7	60 62
4.14 SQUARE-WAVE OSCILLATOR 300 HZ	
4.15 PULSE GENERATOR	63
4.16 LINEAR TRIANGULAR WAVE GENERATOR	64
4.17 WIEN BRIDGE OSCILLATOR	65
4.18 PEAK DETECTOR	67
4.19 Band-Pass Amplifier	70
4.20 BANDWIDTH OF THE BAND-PASS AMPLIFIER	72
4.21 THREE-POLE BUTTERWORTH LOW-PASS FILTER	73
4.22 SLOPE IN THE STOP BAND	76
NONLINEAR SYSTEMS	•••••
5.1 CHAOS IN NONLINEAR SYSTEMS	77

ANALYSIS

ALT + 1 : Transient Analysis ALT + 2 : A-C Analysis (Frequency Response) ALT + 3 : D-C Analysis ALT + 4 : Dynamic D-C Analysis

F3: Schematic WindowF9: Analysis LimitsF2: Run AnalysisF8: Cursor Mode in Analysis Window

Ctrl + E: Select Mode Ctrl + T: Text Mode Ctrl + W: Straight Wire Mode

Exp 1.1 D-C Voltages

Set up this circuit in the simulation program and on the proto-board.

Activate the **Dynamic D-C Analysis** to observe the voltages at various points in the circuit.

Compare these voltages with the corresponding values measured in the actual circuit.

COMMON EMITTER AMPLIFIER

Exp 1.2 Output Voltage and Voltage Gain

Set the signal source to have an amplitude of 100 mV at f = 10 kHz. This will result in Vin having an amplitude of 10 mV due to the 10:1 voltage divider comprised of R₉ and R₁₀.

Use these Transient Analysis Limits.

🛗 Transient Analysis Limi	ts					
Add	<u>D</u> elete Ex	pand Step	ping Properties.	<u>H</u> e	lp	
Time Range	200us		<u>R</u> un Options	Normal	•	
Maximum Time Step	200ns		<u>S</u> tate Variables	Zero	•	
Number of Points	50		🔽 Operating Poi	nt		
Temperature Linear 💌	27		🔽 Operating Poi	nt Only		
			📕 Auto Scale Ra	anges		
Р	X Expression		Y Expression		X Range	Y Range
1 T		0			TMAX,TMIN,25	4,-4,0.5
1 T		V(Vin)			TMAX,TMIN,25	10m,-10m,2.5m
		ν(νουτ)			TMAX,TMIN,25	4,-4,0.5

Determine the voltage gain.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the voltage gain of the actual circuit with that of the simulation.

Exp 1.3 Frequency Response

Use these A-C Analysis Limits.

📆 AC Analysis Limits					
Add	Delete Expand Step	ping Properties	<u>H</u> elp		
Frequency Range	20Meg, 100	Run Options	Normal	-	
Number of Points	50	<u>S</u> tate Variables	Zero	-	
Temperature Linear 💌	27	Erequency Step	Auto	<u> </u>	
Maximum Change %	1	🔽 Operating Point		_	
Noise Input	1	📕 Auto Scale Rang	jes		
Noise Output	2				
P	X Expression	Y Expression		XRange	Y Range
	F ((VOUT)/	V(VIN)	FN	IAX,FMIN	300,0,50

Run the Analysis.

Find the frequencies at which the gain is down from its maximum or mid-frequency value by a factor of 1 over the square root of 2 = 0.7071. Find the corresponding frequencies in the actual circuit and compare the results with the simulation.

COMMON EMITTER AMPLIFIER

Exp 1.4 Effect of Signal Source Resistance on Voltage Gain

Add resistor R_S to the circuit in the simulation program and on the proto-board. Resistor R_S (plus the same contribution of the parallel combination of R_9 and R_{10}) represents the signal source resistance.

Use these Transient Analysis Limits.

🛗 Transient Analy	sis Lin	nits					
Run A	,dd	<u>D</u> elete	Expand	Stepping Properties] <u>H</u> e	elp	
Time Range		200us		<u> </u>	Normal	•	
Maximum Time Step	1	200ns		<u>S</u> tate Variables	Zero	<u> </u>	
Number of Points		50		🗕 🔽 Operating Po	int		
Temperature Linea	ar 🔽	27		— 🔽 Operating Po	int Only		
				🔽 Auto Scale R	anges		
	P	X Expression		Y Expression		XRange	Y Range
	1 T		0			TMAX,TMIN,25	4,-4,0.5
	1 T		V(Vin)			TMAX,TMIN,25	10m,-10m,2.5m
	1 T		ν(νουτ))		TMAX,TMIN,25	4,-4,0.5

Here are the Stepping Settings.

Stepping									
1:RS.Value	2:	3:	4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What	RS							<u>→</u> Va	lue
<u>L</u> ist	0,300,	,1K							
<u>I</u> 0									
Step <u>V</u> alue	0								
Step It	r _{No}	_ [^	lethod— Linear	۲Lo	g r Li	st	Paramet Com	er Type- ponent	ر Model

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. From these results, determine the input resistance that is seen looking from V_{IN} into the amplifier.

Exp 1.5 Effect of Signal Source Resistance on Voltage Gain

Use these A-C Analysis Limits.

🛗 AC Analysis Limits				
Run <u>A</u> dd	Delete Expand Ste	pping Properties	<u>H</u> elp	
Frequency Range	β0Meg, 10	Run Options Norm	al 🔽	
Number of Points	50	<u>S</u> tate Variables Zero	<u> </u>	
Temperature Linear 💌	27	Erequency Step Auto	<u> </u>	
Maximum Change %	1	🔽 Operating Point		
Noise Input	1	📕 Auto Scale Ranges		
Noise Output	2			
Р	X Expression	Y Expression	XRange	Y Range
	F (VOUT)	/V(VIN)	FMAX,FMIN	300,0,50

Here are the Stepping Settings.

Stepping								
1:RS.Value	2: 3	: 4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What F	RS						<u>→</u> Va	lue
<u>L</u> ist 0),300,1K							
I∘ [
Step⊻alue [0)							
Step It r Yes r	No	r Method	۲Log	g r Lia	st	Paramel	er Type- ponent	ر Model

Run the Analysis.

Find the frequencies at which the gain is down from its maximum or mid-frequency value by a factor of 1 over the square root of 2 = 0.7071. Find the corresponding frequencies in the actual circuit and compare the results with the simulation.

Exp 1.6 Time-Domain Response to a Pulse Input

Change the signal source from a sine wave to a square wave in the simulation program and on the proto-board.

The signal source is a Pulse Source using a SQUARE WAVE.

Pulse Source		x
Name MODEL	Value Show SQUARE	▼ 「 Show _ Change
Pin Markers	🏳 Pin Names 🖵 Pin Numbers 🔽 Current	Power 🔽 Condition
PART=Vs MODEL=SQUARE PACKAGE= COST= POWER=		Voltage vs. Time IMPULSE PULSE SAWTOOTH SQUARE SQUARE TRIANGLE

The SQUARE WAVE has a period of 300 ns and an amplitude of 100 mV.

Source:Local text area	of D:\MC7\EE340\01 CE AMPLIFIER\03A	CE AMPLIFIER TDR.CIR
VZERO 0	VONE 100M	P1 0
P2 0	P3 150N	P4 150N
P5 300N	-	

Use these Transient Analysis Limits.

COMMON EMITTER AMPLIFIER

📅 Transient Analysis Lim	iits					2
Run <u>A</u> dd	<u>D</u> elete Ex	pand Steppin	g Properties	<u><u>H</u>e</u>	lp	
Time Range	300n	<u>I</u>	<u>R</u> un Options	Normal	•	
Maximum Time Step	0		<u>S</u> tate Variables	Zero	<u> </u>	
Number of Points	50	I	🗸 Operating Poin	t		
Temperature Linear 💌	27	I	 Operating Poin 	t Only		
		I	Auto Scale Ra	nges		
Р	X Expression	YI	Expression		XRange	Y Range
IIII 1 T		V(Vs)			TMAX,TMIN,25	100m,0,10m
		ν(νουτ)			TMAX,TMIN	1,-4,0.5

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Find the 10% to 90% rise time and the 90% to 10% fall time of the actual circuit and compare with the simulation.

COMMON EMITTER AMPLIFIER

Exp 1.7 Effect of Rs on the Time-Domain Response to a Pulse Input

Add resistor R_S to the circuit in the simulation program and on the proto-board. Resistor R_S (plus the same contribution of the parallel combination of R_9 and R_{10}) represents the signal source resistance.

Use these Transient Analysis Limits.

🛗 Transient Analysis L	imits					
Run <u>A</u> dd	<u>D</u> elete E	xpand Step	ping Properties	<u>H</u> e	elp	
Time Range	2.5us		<u>R</u> un Options	Normal	-	
Maximum Time Step	2.5ns		<u>S</u> tate Variables	Zero	<u> </u>	
Number of Points	50		🔽 Operating Poir	nt		
Temperature Linear 💌	27		🔽 Operating Poir	nt Only		
			📕 Auto Scale Ra	anges		
Р	×Expression		Y Expression		XRange	Y Range
1 T		V(Vs)			TMAX,TMIN	100m,0
		ν(νουτ)			TMAX,TMIN	1,-4

Here are the Stepping Settings.

Stepping								
1:RS.Value 2	: 3	: 4:	5:	6:	7:	8:	9:	 10:
<u>S</u> tep What R	S						<u>→</u> Va	lue
<u>L</u> ist 0,	300,1K							
Ιo								
Step⊻alue 0								
Step It	No	⊢ Method—	۲Log	g r Lis	st 🗌	Paramet Comp	er Type- oonent	ر Model

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 2.1 Effect of Input Signal Level on Two-Stage Cascaded Amplifier

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

📅 Transient Analysis Limits								
Run <u>A</u> dd <u>D</u> elete Expand Stepping Properties <u>H</u> elp								
Time Range	2ms		<u>R</u> un Options	Normal	•			
Maximum Time Step	0		<u>S</u> tate Variables	Zero	<u> </u>			
Number of Points	s 50 🔽 🔽 Operating Point							
Temperature Linear 💌	Temperature Linear 🗾 🛛 27 🗖 🔽 🔽 Departing Point Only							
			📕 Auto Scale Rang	ges				
Р	X Expression		Y Expression		XRange	Y Range		
IIII 1 T		VE(Q2)			TMAX,TMIN,0.	22,-0,2		
□□□ □ □ 1 T		VC(Q2)			TMAX,TMIN,0.	22,-0,2		
		V(Vcc)			TMAX,TMIN,0.	22,-0,2		

Here are the Stepping Settings.

Stepping		Ŭ							
1:VS.A 2:	3:	4:	5:	6:	7:	8:	9:	10:	11:
<u>S</u> tep What	VS						•	A	
<u>F</u> rom	1V								
<u>Ι</u> ο	8V								
Step <u>V</u> alue	2								
Step It r Yes	• No	C Lin	d ear r	Log (- List	Para r [0	ameter Ty Componer	pe ng см	lodel

CASCADED AMPLIFIERS

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 2.2 Frequency Response Two-Stage Cascaded Amplifier

🛗 AC Analysis Limits						
Run <u>A</u> dd	<u>D</u> elete Expand	d Stepp	ing Properties.	<u>H</u> elp		
Frequency Range	1Meg, 10		<u>R</u> un Options	Normal	<u> </u>	
Number of Points	50		<u>S</u> tate Variables	Zero	<u> </u>	
Temperature Linear 💌	27		<u>F</u> requency Step	Auto	<u> </u>	
Maximum Change %	5		🔽 Operating Poir	nt		
Noise Input	1		🔽 Auto Scale Ra	anges		
Noise Output	2					
Р	× Expression		Y Expression		XRange	Y Range
	F		(Vin)		FMAX,FMIN	7K,0,1K
	F	4465			FMAX,FMIN	7K,0,1K

Use these A-C Analysis Limits.

Run the Analysis.

Find the frequencies at which the gain is down from its maximum or mid-frequency value by a factor of 1 over the square root of 2 = 0.7071. Find the corresponding frequencies in the actual circuit and compare the results with the simulation.

Exp 2.3 Effect of Load Resistance on Voltage Gain

Use these A-C Analysis Limits.

AC Analysis Limits				
Run <u>A</u> dd		Stepping Properties.	<u>H</u> elp	
Frequency Range	Meg, 10	<u>R</u> un Options	Normal 💽	
Number of Points		<u>S</u> tate Variables	Zero 💌	
Temperature Linear 💌 2	:7	<u> </u>	Auto 💌	
Maximum Change % 5	;	Γ		
Noise Input		 □ Auto Scale Rang	ges	
Noise Output 2				
P XE	xpression	YExpression	XRange	YRange
	(TUOV)/	√(Vin)	FMAX.FMIN	8K,0,1K

Here are the Stepping Settings.

1:RL.Value 2: 3:	4:] 5:]	6:] 7:	8:	9:] 10:] 1
Step What RL					• [V	'alue	
From 100							
To 1MEG							
Step Value 10							
Step It	Method			Para	meter Type		
က Yes င No	C Linear	🖲 Log	⊂ List	€ Co	omponent	ΩM	odel

Run the Analysis.

Measure the voltage gain of the actual circuit at f=1 kHz. Compare the results with the values obtained from the simulation.

Exp 2.4 Voltage Gain and Effect of the Input Signal Level

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Transient Analysis Limits				
Run Add		Stepping Properties	Help	
Time Range	12ms	Run Options	Normal 🗾	
Maximum Time Step	12us	State Variables	Zero 💌	
Number of Points		Operating Point		
Temperature Linear 💌	27	 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	ıly	
		□ Auto Scale Range	s	
P XExp	pression	YExpression	XRange	YRange
	V(Vout)		10m,8m,0.25m	12V,0,1V

Here are the Stepping Settings.

Stepping								
1:VS.A 2:] 3:] 4:] 5:	6:] 7:	8:	9:	10:] 11:
Step What	VS					-	▼ A	
From	1V							
То	4∨							
Step Value	2							
Step It		Method			F	'arameter	Туре	
Yes	⊂ No	C Linear	← Log	⊂ List		Compor	nent	⊂ Model

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Note that Vin is equal to Vs times the voltage division ratio produced by the R₉-R₁₀ voltage divider. In this example the voltage division ratio is $R_{10}/(R_9+R_{10})=10/(10K+10)=0.001$.

Exp 2.5 Comparison of Voltage Gain with and without the Darlington Emitter-Follower for Impedance Transformation.

Modify the circuit in the simulation program by adding resistor R_{SW} . This resistor can have any value such as 1 K Ω .

Use these Transient Analysis Limits.

AC Analysis Limits					
Run Add		Stepping Pro	perties Help		
Frequency Range	10Meg, 10	Run Options	Normal	•	
Number of Points		State Variab	oles Zero	•	
Temperature Linear 💌	27	Frequency S	Step Auto	•	
Maximum Change %	5	Γ			
Noise Input	1	 ∏ Auto Sca	le Ranges		
Noise Output	2				
P	XExpression	Y Expression	×	Range	YRange
	V(V(DUT)/V(Vin)	FMAX	(FMIN	3K.1

Here are the **Stepping Settings**.

Stepping								
1:RSW.Value);	2:] 3:] 4:] 5:] 6:]	7:	8:	9:] 10:]
Step What F	RSW						▼ Vε	alue
List 1	G,0							
[
i l								
Step It		Method				Paramete	er Type	
e Yes CI	No	⊂ Linear	⊂ Log			Comp	onent	C Model

Note that resistor RSW will be stepped from 1 G Ω to 0. When R_{SW} = 0, the Q₃-Q₄ Darlington pair is bypassed by R_{SW}, and thus has no effect. R_{SW} = 1 G Ω , it acts essentially like an opencircuit and the Q₃-Q₄ Darlington pair is no longer bypassed by R_{SW}.

Measure voltage gain of the circuit at f = 1 kHz with the Darlington pair bypassed by a shortcircuit, and for the case of it not being bypassed. Compare the results with the simulation.

Exp 3.1 Push-Pull Circuit

Transistor Q1 can be any suitable NPN transistor such as a 2N4124 or a 2N2222. Transistor Q1 can be any suitable PNP transistor such as a 2N3906.

Run <u>A</u> dd <u>D</u> el	ete Expand S	Stepping Properties	<u>H</u> elp	
Time Range 100u		Run Options No	rmal 💌	
Maximum Time Step 0		<u>S</u> tate Variables Ze	<u> </u>	
Number of Points 51		Operating Point		
Temperature Linear 💌 🛛 27		🗖 🔽 Operating Point On	ly	
		🔽 Auto Scale Range:	5	
P X Expr	ession	Y Expression	×Range	Y Range
	0		TMAX,TMIN,25	1,-1,0.25
	v(V0)		TMAX,TMIN	1,-1,0.25
	V(VS)		TMAX,TMIN	1,-1,0.25

Use these Transient Analysis Limits.

Here are the **Stepping Settings**.

PUSH-PULL CIRCUITS

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Note the "crossover distortion" in the region where both transistors are off.

Exp 3.2 Voltage Transfer Curve

Use these **D-C Analysis Limits**.

Run <u>A</u> dd <u>D</u> elete Expand Stepping Properties <u>H</u> elp					
Method Name	Range				
Variable 1 Auto VS	기 				
Temperature Method Range Linear 127	Number of Points Maximum 51	m Change %—			
<u>B</u> un Options Normal 🗾 🗖 Auto Sc.	ale Ranges				
P X Expression	Y Expression	XRange	Y Range		
	0	5,-5,1	5,-5,1		
	v(V0)	5,-5,1	5,-5,1		

Here are the Stepping Settings.

Run <u>A</u> dd <u>D</u> elete Expand Stepping Properties <u>H</u> elp						
Sweep Method Name Variable 1 Auto ▼ VS	Range					
Variable 2 None						
Temperature Method Range Linear <u> </u> 27	Number of Points Maximum	n Change %—				
Bun Options Normal 🗾 🗖 Auto Sc	ale Ranges					
P × Expression	Y Expression	XRange	Y Range			
	0	5,-5,0.5	5,-5,1			
	v(V0)	5,-5,0.5	5,-5,1			

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What is the width of the "crossover distortion" region where both transistors are off?

Exp 3.3 Minimizing Crossover Distortion

Set up this circuit in the simulation program and on the proto-board. Diodes D_1 and D_2 can be any suitable diode such as a 1N4001 or a 1N914.

Use these Transient Analysis Limits.

Run <u>A</u> dd	<u>D</u> elete Ex	kpand Stepping	Properties	elp	
Time Range	100u	<u> </u>	ptions Norma	al 🔽	
Maximum Time Step	0	<u>S</u> tate \	Variables Zero	<u> </u>	
Number of Points	51	며 이 되	perating Point		
Temperature Linear 👱	27		perating Point Only		
		Г Au	ito Scale Ranges		
Р	X Expression	Y Expres	ssion	X Range	Y Range
		0		TMAX,TMIN,25	1,-1,0.25
		v(V0)		TMAX,TMIN	1,-1,0.25
		V(VS)		TMAX,TMIN	1,-1,0.25

Here are the Stepping Settings.

1:RL.Value	2:	3:	4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What	RL							<u>→</u> Va	lue
<u>L</u> ist	10,1K								

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the crossover distortion to the previous case.

Exp 3.4 Minimizing Crossover Distortion Voltage Transfer Curve

Run <u>A</u> dd <u>D</u> elete Ex	xpand Stepping Properties <u>H</u>	elp	
Method Name Variable 1 Auto 🔽 VS	Range ▼ 55		
Variable 2 None 🔽	<u>-</u> 		
Temperature Method Range Linear 127	Number of Points Maximu 51 5	m Change %—	
Bun Options Normal 🗾 🗖 Auto Sc	ale Ranges		
P × Expression	Y Expression	X Range	Y Range
	0	5,-5,1	5,-5,1
	v(V0)	5,-5,1	5,-5,1

Use these **D-C Analysis Limits**.

Here are the Stepping Settings.

1:RL.Value 2:	3:	4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What RL							<u>→</u> Va	lue
<u>L</u> ist 10,3	0,300							
Ιo								
Step <u>V</u> alue								
Step It	, [Method— C Linear	۲Lo	g r L	ist	Paramet	er Type- ponent	ر Model

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What is the width of the "crossover distortion" region where both transistors are off?

Exp 3.5 Using Darlington Emitter-Followers

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Time Range	100u	<u>R</u> un Options Nor	mal 🗾	
Maximum Time Step	0	<u>S</u> tate Variables Zeri	□ □	
Number of Points	51	✓ Operating Point		
Temperature Linear	27	🔽 Operating Point Only	,	
		🔽 Auto Scale Ranges		
Р	X Expression	Y Expression	XRange	Y Range
1	T	0	TMAX,TMIN	5,-5,1
1	Т	v(VO)	TMAX,TMIN	5,-5,1
1	Т	V(VS)	TMAX,TMIN	5,-5,1
			_	

Here are the **Stepping Settings**.

<u>S</u> tep What	RL				<u>▼</u> Value
<u>L</u> ist	10,10K				
Ιo	160				
Step <u>V</u> alue	2				
Step It-	r _{No}	-Method C Linear	۲Log	€ List	Parameter Type Component C Model

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 3.6 Voltage Transfer Curves

Use these **D-C Analysis Limits**.

Sweep Method Name Variable 1 Auto ✓ VS Variable 2 None ✓	Range ▼ 5.5 ▼ 7		
Temperature Method Range Linear I 27 <u>B</u> un Options Normal I Auto Sc	ale Ranges	n Change %—	
P × Expression	Y Expression	XRange	Y Range
	0	5,-5,0.5	5,-5,1
	v(V0)	5,-5,0.5	5,-5,1

Here are the Stepping Settings.

<u>S</u> tep What	RL	_ Value
<u>L</u> ist	10,10K	
Ιo	160	
Step <u>V</u> alue	2	
Step It-		Parameter Type

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 3.7 Comparison of Circuit With and Without Diodes

Resistors R_{SW1} and R_{SW2} both use **MODEL=RX**.

Resistor	
PART	Show
Display Pin Markers	F Pin Names F Pin Numbers
PART=Rsw1 VALUE=1 FREQ= MODEL=RX	

Use these Transient Analysis Limits.

Time Range	100u		<u>R</u> un Options	Normal	<u> </u>		
Maximum Time Step	0		<u>S</u> tate Variables	Zero	<u> </u>		
Number of Points	51		☑ Operating Point				
Temperature Linear 💌	27	Coperating Point Only					
			📕 Auto Scale Ra	nges			
Р	X Expression		Y Expression		XRange	Y Range	
III 1 T		0			TMAX,TMIN,25	5,-5,1	
1 T		v(VO)			TMAX,TMIN	5,-5,1	
1 T		V(VS)			TMAX,TMIN	5,-5,1	

PUSH-PULL CIRCUITS Using Darlington Emitter-Followers EXPERIMENT 3.7

	<u> </u>	<u> </u>					.0112.
1:RES RX.R	2:RSW2.Value 3	: 4:	5:	6:	7:	8:	9:
<u>S</u> tep What	RES RX				-	- R	
<u>L</u> ist	0,1G						
<u>I</u> o	160						
Step <u>V</u> alue	2						
r Step It	No Method	ar 🤈 Log	r Lis		Parameter Compo	r Type — onent 🦸	Model

Here are the Stepping Settings for resistors R_{SW1} and R_{SW2}.

The value of RX will be step between 0 and 1G. This will result in resistors being stepped between 0 (i.e. a short-circuit) and $1G\Omega$ (= 1000 M Ω), which is essentially an open circuit.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 3.8 Comparison of Circuit With and Without Diodes – Voltage Transfer Curves

Use these D-C Analysis Limits.

Sweep Method Name Variable 1 Auto VS Variable 2 None Variable 2	Range I I 5 ,5 I I		
Temperature Method Range Linear I 27 Bun Options Normal I Auto Sc	Aumber of Points Maximu	m Change %	
P X Expression	Y Expression	XRange	Y Range
	0	5,-5,1	5,-5,1
	v(V0)	5,-5,1	5,-5,1

Here are the Stepping Settings for resistors R_{SW1} and R_{SW2}.

1:RES RX.R	2:RSW2.Value 3: 4: 5: 6: 7: 8: 9:
<u>S</u> tep What	RES RX
<u>L</u> ist	0,1G
Ιo	160
Step <u>V</u> alue	2
Step It	No Method Parameter Type C Linear C Log C List C Component C Model

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 3.9 Amplifier with Push-Pull Circuit Output Stage

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Time Range	2m		<u>R</u> un Options No		-	
Maximum Time Step	2u		<u>S</u> tate Variables	Zero	<u> </u>	
Number of Points		🔽 Operating Poin	it			
Temperature Linear 💌	🗖 Operating Point Only					
			🗖 Auto Scale Ranges			
Р	X Expression		Y Expression		X Range	Y Range
		V(Vout)			TMAX,TMIN,.2	5,-5,1
		0			TMAX,TMIN,.2	5,-5,1

Here are the **Stepping Settings**.

1:VS.A 2:	3:	4:	5:	6:	7:	8:	9:	10:	1
<u>S</u> tep What	VS						<u> </u>	А	
<u>F</u> rom	1V								
<u>I</u> 0	4∨								
Step <u>V</u> alue	2								
Step It-	no No	C Lji	near r	Log (∼ _{List}	Para (ameter Ty Componer	ре ng с м	lodel

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Note that V_{IN} is equal to V_S times the R_9 - R_{10} voltage division ratio, which in this example is 1/1000.
Exp 4.1: Open-Loop Transfer Curves

Set up this circuit in the simulation program and on the proto-board.

Use these D-C Analysis Limits.

📅 DC Analysis Limits							
Run <u>A</u> dd <u>D</u> elete Ex	pand Stepping Properties <u>H</u> e	elp					
Sweep Method Name Variable 1 Auto <u>▼</u> Vs Variable 2 None <u>▼</u> NONE	Range TV,-1V NONE						
Temperature Method Range Linear ✓ 27							
<u>R</u> un Options Normal 🗾 Г Auto Sc	ale Ranges						
P X Expression	Y Expression	XRange	Y Range				
1 v(Vs)/100	v(V0)	10mV,-10mV,2	18V,-18,2V				
1 v(Vs)/100	0	10mV,-10mV,2	18V,-18,2V				
[IIII] 1 v(Vs)/100	V(V+)	10mV,-10mV,2	18V,-18,2V				
1 v(Vs)/100	V(V-)	10mV,-10mV,2	18V,-18,2V				

OPERATIONAL AMPLIFIER

Here are the stepping settings:

Stepping							
1:0PA LM741.VOFF	2:A1.LEVEL 3:	4:	5:	6:	7:	8:	I
Step What OPA LM	741				<u> </u>	VOFF	
List -4mV,0,+	4mV						
Īo							
Step <u>V</u> alue							
Step It Yes C No	∩ Linear C	Log 🦻	List	Param Co	neter Typ Imponent	е Г Мо	odel

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 4.2 : Closed-Loop Transfer Curves

Set up this circuit in the simulation program and on the proto-board.

Use these D-C Analysis Limits.

🛗 DC Analysis Limits									
<u>A</u> do	<u>D</u> elete E	kpand Stepping Properties <u>H</u> e	elp						
Method	Name	Range							
Variable 1 Auto	▼ Vs	- − 1 <i>V</i> ,-1 <i>V</i>							
Variable 2 None	NONE								
Temperature Maximum Change % Method Range Linear 27									
<u>R</u> un Options Normal	🗾 🔽 Auto Sc	cale Ranges							
P	X Expression	Y Expression	XRange	Y Range					
	v(Vs)	v(V0)	1V,-1V,0.2V	18V,•18,2V					
	v(Vs)	0	1V,-1V,0.2V	18V,-18,2V					
1	v(Vs)	V(V+)	1V,-1V,0.2V	18V,•18,2V					
	v(Vs)	V(V-)	1V,-1V,0.2V	18V,-18,2V					

Here are the Stepping Settings.

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the closed-loop gain with the expected value of $A_{CL} = 1 + (R_F/R_1)$.

Exp 4.3 Closed-Loop Transfer Curves Effect of V+ Supply Voltage

Set up this circuit in the simulation program and on the proto-board.

Use these Transient D-C Analysis Limits.

📅 DC Analysis Limits								
Run <u>A</u> dd <u>D</u> elete E	xpand Stepping Properties <u>H</u>	elp						
Method Name Variable 1 Auto ▼ Vs	Range ▼ 1 1V,-1V							
Variable 2 None VONE NONE NONE								
Temperature Mumber of Points Maximum Change % Method Range 51 Inear 27 51								
Bun Options Normal 🗾 🔽 Auto S	icale Ranges							
P × Expression	Y Expression	XRange	Y Range					
		1V,-1V,0.2V	20V,-20V,2V					
1 v(Vs)	0	1V,-1V,0.2V	20V,-20V,2V					
1 v(Vs)	V(V+)	1V,-1V,0.2V	20V,-20V,2V					
1 v(Vs)	- V(V-)	1V,-1V,0.2V	207,-207,27					

OPERATIONAL AMPLIFIER

Here are the Stepping Settings.

Stepping									
1:VCC.dc.val	ue 2:	3:	4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What	VCC						<u> </u>	dc.valu	le
<u>F</u> rom	5								
Ιo	15								
Step <u>V</u> alue	5								
C Step It		_ ^{Meth}	odbc			Γ ^{Par}	ameter Ty	ре	
r Yes r	No	l 🕻 Lị	near 🤈	Log (C List	0	Compone	nt 🕻 l	Model

Run the Analysis.

20.			01C EFF	ECT OF V+	DC.CIR VO	C.dc.valu	ie=515			
18 CLC	DSED-LO									
16			V+ = 15	V						
14					·					
12					· ¦					
10.				V 			1	1		
8			;	;	·		· _I			
6				V						
2										
0.										
-2										
-4					/					
-6.├L	M 741			/-						
-8 R	1=1K	!		····/··	!					
-10. R	F = 47K		;		· ;				;	
-12					·		·			
-16							<u> </u>	- = -15V		
-18										
-20.										
-1.0 v(VO)	-0.8	-0.6	-0.4	-0.2	0.0 V(V+)	0.2	0.4 V/	V-)	0.8	1.0
-1			-	V(Vs)	•(••)		• (.* !		

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 4.4 Closed-Loop Transfer Curves Effect of V- Supply Voltage

Set up this circuit in the simulation program and on the proto-board.

Use these D-C Analysis Limits.

📅 DC Analysis Limit	8			x		
	<u>D</u> elete Ex	pand Stepping Properties <u>H</u> e	łp			
Method Variable 1 Auto	Name Vs	Range ▼ 11717				
Variable 2 None						
Temperature Mumber of Points Maximum Change % Method Range 51 J 27 3						
<u>R</u> un Options Normal	🗾 🗖 Auto Sc	ale Ranges				
Р	× Expression	Y Expression	XRange	Y Range		
	v(Vs)	v(V0)	1V,-1V,0.2V	20V,-20V,2V		
	v(Vs)	0	1V,•1V,0.2V	20V,-20V,2V		
1	v(Vs)	V(V+)	1V,-1V,0.2V	20V,-20V,2V		
1	v(Vs)	V(V-)	1V,-1V,0.2V	207,-207,27		

OPERATIONAL AMPLIFIER

Here are the Stepping Settings.

Stepping								
1:VEE.dc.value 2:	3:	4:	5:	6:	7:	8:	9:	10:
Step What VEE						<u> </u>	dc.valu	le
Erom -5								
<u>T</u> o -15								
Step⊻alue ₋ 5								
Step It		od inear (Log (r List	Par.	ameter Ty Compone	nt r	Model

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 4.5 OUTPUT VOLTAGE VERSUS TIME RISE & FALL TIMES

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

OPERATIONAL AMPLIFIER

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Measure the 10% to 90% Rise Time and the 90% to 10% Fall Time on the circuit and compare with the simulation results as shown below.

Exp 4.6 Current Limiting

Set up this circuit in the simulation program and on the proto-board.

Use these D-C Analysis Limits.

Sweep Method Variable 1 Auto ✓ Variable 2 None ✓	Name Vs NONE	Range ▼ 10V,-10V ▼ NONE						
Temperature Maximum Change % Method Range Linear 27 Bun Options Normal								
Р	× Expression	Y Expression	XRange	Y Range				
	(Vs)	v(V0)	10V,-10V,1V	18V,•18V,2V				
1 v((Vs)	V(V+)	10V,-10V,1V	18V,-18V,2V				
	(Vs)	V(V-)	10V,-10V,1V	18V,-18V,2V				

Here are the Stepping Settings.

1:RL.Value	2:A1.LEVE	EL 3:	4:	5:	6:	7:	8:	9:	
<u>S</u> tep What	RL						-	Value	
<u>L</u> ist	0,100,250,	,500,1K							
<u>I</u> 0									
Step <u>V</u> alue									
Step It	No	r Method	ear C	Log A	tist	Parar C	neter Typ omponen	t С М	odel

OPERATIONAL AMPLIFIER

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. The current limit of this operational amplifier is $I_{CL} = \pm 20$ mA. Compare the results with the expected values.

Use these Transient Analysis Limits.

Run <u>A</u> dd <u>D</u> elete Ex	pand Stepping Properties <u>H</u>	elp			
Time Range 1ms	<u>R</u> un Options Norma	<u> </u>			
Maximum Time Step 0	<u>S</u> tate Variables Zero	<u> </u>			
Number of Points 51	🔽 Operating Point				
Temperature Linear 🗾 🛛 🔽 🔽 🔽 🔽 Temperating Point Only					
	🔽 Auto Scale Ranges				
P X Expression	Y Expression	XRange	Y Range		
	V(VS)	TMAX,TMIN	1.6,-1.6,0.2		
	V(Vo)	TMAX,TMIN	16,-16,2		
	V(V+)	TMAX,TMIN	16,-16,2		
	V(V-)	TMAX,TMIN	16,-16,2		

Use the same Stepping Settings as before.

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. The current limit of this operational amplifier is $I_{CL} = \pm 20$ mA. Compare the results with the expected values.

EXP 4.7 Precision Half-Wave Rectifier

Set up this circuit in the simulation program and on the proto-board.

Use these **Transient Analysis** Limits.

Run <u>A</u> dd	<u>D</u> elete E	pand Ste	pping Properties <u>H</u>	elp			
Time Range	40ms		Run Options Norma	· _			
Maximum Time Step	40us		<u>S</u> tate Variables Zero				
Number of Points 51			🔽 Operating Point				
Temperature Linear 🗾 🛛 27			C Operating Point Only				
			🖵 Auto Scale Ranges				
Р	X Expression		Y Expression	X Range	Y Range		
IIII 1 T		V(VS)		TMAX,TMIN,5	1.1,-1.1,0.1		
ШШ П П Т		V(VO)		TMAX,TMIN	1.1,-1.1,0.1		
1 T		0		TMAX,TMIN	1.1,-1.1,0.1		

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What effect does the diode voltage drop have on this circuit, as compared to a half-wave rectifier that does not use an operational amplifier? Why is this called a **Precision Half-Wave Rectifier**?

📅 DC Analysis Limits			
Run <u>A</u> dd <u>D</u> elete Ex	pand Stepping Properties <u>H</u>	elp	
Method Name Variable 1 Auto <u>▼</u> Vs	Range ▼		
Variable 2 None 🗾 NONE			
Temperature Method Range Linear 127	Number of Points Maximu	m Change %—	
<u>R</u> un Options Normal 🗾 🗖 Auto Sc	ale Ranges		
P × Expression	Y Expression	XRange	YRange
	v(V0)	1V,-1V,0.2	1V,-1V,0.2V
1 v(Vs)	0	1V,-1V,0.2	1V,-1V,0.2V

Now use these **D-C Analysis Limits**.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What effect does the diode voltage drop have on this circuit, as compared to a half-wave rectifier that does not use an operational amplifier? Why is this called a **Precision Half-Wave Rectifier**?

EXP 4.8 Precision Full-Wave Rectifier

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

🛗 Transient Analysis Lim	nts				
Add	<u>D</u> elete Ex	kpand Stepping Prop	erties <u>H</u> e	elp	
Time Range	40ms	<u>R</u> un Options	s Norma	· _	
Maximum Time Step	40us	<u>S</u> tate Variab	^{iles} Zero	<u> </u>	
Number of Points	51	🔽 Operatir	ig Point	_	
Temperature Linear 💌	27	📕 🔽 Operatir	ig Point Only		
		🔽 Auto Sc	ale Ranges		
Р	X Expression	Y Expression		X Range	Y Range
IIII 1 T		V(VS)		TMAX,TMIN,5	1,-1,0.2
		V(VO)		TMAX,TMIN,5	1,-1,0.2
I T		0		TMAX,TMIN,5	1,-1,0.2

OPERATIONAL AMPLIFIER

EXPERIMENT 4.8

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What effect does the diode voltage drop have on this circuit, as compared to a half-wave rectifier that does not use an operational amplifier? Why is this called a **Precision Full-Wave Rectifier**?

Now use these **D-C Analysis Limits**.

🛗 DC Analys	sis Limits							
Run	Add	<u>D</u> elete	Expand	Stepping	Propertie	s] <u>H</u>	elp	
Sweep	1ethod	Name			Range			
Variable 1	Auto 🗾	Vs	<u> </u>	-	1V,-1V			
Variable 2	None 🗾	NONE	J	<u> </u>	NONE			
- Temperature Method	e			Number of F	oints –	- Maximu	ım Change %—	
Linear _	27			51	—	5		
<u>R</u> un Options	Normal	- L Anto) Scale Rang	les		L		
	Р	X Expression		Y Expre	ession		XRange	Y Range
	1 v(V:	s)	v(V0)				1V,-1V,0.2V	1V,-1V,0.2V
	1 v(V:	s)	0				1V,-1V,0.2V	1V,-1V,0.2V

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. What effect does the diode voltage drop have on this circuit, as compared to a half-wave rectifier that does not use an operational amplifier? Why is this called a **Precision Full-Wave Rectifier**?

Exp 4.9 Closed-Loop Slewing Rate – Square-Wave Input

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

🛗 Transient Analysis Limits							
Run <u>A</u> dd <u>D</u> elete Expand Stepping Properties <u>H</u> elp							
Time Range 200U	<u>R</u> un Options Normal	•					
Maximum Time Step 0	State Variables Zero	<u> </u>					
Number of Points 51	Operating Point	_					
Temperature Linear 🗾 🛛 27	🔽 Operating Point Only						
	🔽 Auto Scale Ranges						
P × Expression	Y Expression	XRange	Y Range				
	V(Vin)	TMAX,TMIN,20	12V,·12V,2V				
	V(Vo)	TMAX,TMIN,20	12V,-12V,2V				
	0	TMAX,TMIN,20	12V,-12V,2V				

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 4.10 Closed-Loop Slewing Rate – Sine-Wave Input

Set up this circuit in the simulation program and on the proto-board.

Use these **Transient Analysis** Limits.

In Hanslent Ar	alysis Lill	11.5					
Run	Add	<u>D</u> elete E	xpand	Stepping Properti	es <u>H</u>	elp	
Time Range Maximum Time ! Number of Poin! Temperature L	Step ts .inear <u>▼</u>	100U 100n 51 27		<u>B</u> un Options State Variables ✓ Operating F ✓ Operating F	Norma Zero Point Point Only Ranges	<u> </u>	
	Р	X Expression		Y Expression		XRange	Y Range
	1 T		V(Vin)			TMAX,TMIN,10	10,-10,2
	1 T		V(Vo)			TMAX,TMIN,10	10,-10,2
	1 T		0			TMAX,TMIN,10	10,-10,2

Here are the Stepping Settings.

Stepping								
1:VIN.F 2:	A1.LEVEL 3:	4:	5:	6:	7:	8:	9:	10:
<u>S</u> tep What	VIN					2	J F	
<u>L</u> ist	10K,50K							
<u>I</u> 0	80K							
Step <u>V</u> alue	2				_	_	_	
Step It-		thod Linear	۲Log	€ List] [^{Pa}	arameter Compo	Type	' Model

OPERATIONAL AMPLIFIER

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

.

Exp 4.11 Closed-Loop Slewing Rate – Effect of Sine Wave Amplitude

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Run	Add	ł	<u>D</u> elete	Expar	nd	Stepping	Properties	. <u>Η</u> ε	elp	
Time Range			50us			<u> </u>	Options	Normal	•	
Maximum Tim	ne Step		100n			<u>S</u> tate	• Variables	Zero	<u> </u>	
Number of Points 51 🔽 Operating Point					nt					
Temperature Linear 🗾 27 🔽 🔽 🔽			perating Poir)	nt Only						
						ΓA	uto Scale Ra	inges		
	Р		XExpression			YExpr	ession		X Range	Y Range
	1	Т		V(Vin)				TMAX,TMIN,5u	10V,-10V,2V
	1	Т			Vo)				TMAX,TMIN,5u	10V,-10V,2V
	1	T		0					TMAX,TMIN,5u	10V,-10V,2V

Here are the **Stepping Settings**.

		j					
1:VIN.A 2:	A1.LEVEL	4:	5:	6:	7:	8:	9:
<u>S</u> tep What	VIN					<u> </u>	А
<u>L</u> ist	1,10						
<u>I</u> 0	80K						
Step <u>V</u> alue	2						
Step It-		lethod — Linear	۲Log	€ List] [^{₽.}	arameter Typ ' Component	ie- t

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Exp 4.12 Square-Wave Oscillator 440 Hz

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Run <u>A</u> dd	<u>D</u> elete Ex	pand Stepping Prop	erties <u>H</u> el	p			
Time Range	5ms	<u>R</u> un Option	s Normal	<u> </u>			
Maximum Time Step	0	<u>S</u> tate Variat	oles Zero	<u> </u>			
Number of Points	51	📕 🔽 Operatir	🔽 Operating Point				
Temperature Linear 💌	27	📕 🔽 Operatir	ng Point Only				
		F Auto Sc	ale Ranges				
Р	X Expression	Y Expression		XRange	Y Range		
		V(C1)		TMAX,TMIN,50	16,-16,2		
I T		V(VO)		TMAX,TMIN	16,-16,2		
I T		0		TMAX,TMIN	16,-16,2		
I T		V(V+)		TMAX,TMIN	16,-16,2		
		V(V-)		TMAX,TMIN	16,-16,2		

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the frequency with the expected value as given by the equation $f = 1 / [2 \cdot R_1 \cdot C_1 \cdot \ln (3)]$

Exp 4.13 Square-Wave Oscillator 680 Hz

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Transient Analysis Limits							
Run <u>A</u> dd	Delete Expand	Stepping Properties <u>H</u>	elp				
Time Range 5	ms	Bun Options Norma	I –				
Maximum Time Step 5	us	<u>S</u> tate Variables Zero	<u> </u>				
Number of Points 5	1	C Operating Point					
Temperature Linear 🗾 🛛 🛛	7	🔽 🔽 Operating Point Only					
		🔽 Auto Scale Ranges					
P XI	Expression	Y Expression	X Range	Y Range			
	V(C1)		TMAX,TMIN,50	16,-16,2			
	V(V0)		TMAX,TMIN	16,-16,2			
	0		TMAX,TMIN	16,-16,2			
	V(V+)		TMAX,TMIN	16,-16,2			
	V(V-)		TMAX,TMIN	16,-16,2			

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Compare the frequency with the expected value as given by the equation $f = 1 / [2 \cdot R_1 \cdot C_1 \cdot In (1 + 2 \cdot R_2 / R_3)]$

Exp 4.14 Square-Wave Oscillator 300 Hz

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

🖀 Transient Analysis Limits							
Run <u>A</u> dd	<u>D</u> elete Ex	pand Stepping Properties	<u>H</u> elp				
Time Range Maximum Time Step Number of Points Temperature ↓Linear _	5ms 5us 51 27	<u>B</u> un Options State Variables C Operating Po C Operating Po C Auto Scale F	Normal Zero int int Only anges				
P	X Expression	Y Expression	- X Range	Y Range			
		V(C1)	TMAX,TMIN,50	16,-16,2			
		V(VO)	TMAX,TMIN	16,-16,2			
		0	TMAX,TMIN	16,-16,2			
1 T		V(V+)	TMAX,TMIN	16,-16,2			
		V(V-)	TMAX,TMIN	16,-16,2			

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

Compare the frequency with the expected value as given by the equation $f = 1 / [2 \cdot R_1 \cdot C_1 \cdot In (1 + 2 \cdot R_2 / R_3)]$

Exp 4.15 Pulse Generator

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Run Add Delete Expand Stepping Properties Help							
Time Range	25ms	<u>R</u> un Options	Normal 💌				
Maximum Time Step	0	<u>S</u> tate Variables	Zero 💌				
Number of Points 51 T Operating Point							
Temperature Linear 💌	27	🔽 🔽 Operating Poir	nt Only				
		🔽 Auto Scale Ra	anges				
Р	X Expression	Y Expression	XRange	Y Range			
		V(C1)	TMAX,TMIN	16V,-16V,2V			
		V(VO)	TMAX,TMIN	16V,-16V,2V			
		0	TMAX,TMIN	16V,·16V,2V			
		V(V+)	TMAX,TMIN	16V,-16V,2V			
		V(V-)	TMAX,TMIN	16V,-16V,2V			
		V(V+) V(V-)	TMAX,TMIN	16V,-16V,2V			
			,	,			

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the duty cycle with the expected value. Compare the frequency with the expected value. Hint: modify the equation given in Experiment 4.11

Exp 4.16 Linear Triangular Wave Generator

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

🛗 Transient Analysis Limits								
Run	Add	<u>D</u> elete Ex	pand Stepping Properties <u>H</u>	elp				
Time Range		5ms	Run Options Norma	I -				
Maximum Time Step 0			<u>S</u> tate Variables Zero	<u> </u>				
Number of Po	ints	51	Coperating Point	_				
Temperature	Linear 💌	27	🗖 Operating Point Only					
			🔽 Auto Scale Ranges	o Scale Ranges				
	Р	X Expression	Y Expression	×Range	Y Range			
	III 1 T		V(VOSQ)	TMAX,TMIN,0.	16,-16,2			
	III 1		V(VOTR)	TMAX,TMIN	16,-16,2			
	1 T		0	TMAX,TMIN	16,-16,2			
	III T		V(V+)	TMAX,TMIN	16,-16,2			
	I T		V(V-)	TMAX,TMIN	16,-16,2			

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. Compare the frequency with the expected value. Compare the amplitude of the triangular wave with the expected value.

Exp 4.17 Wien Bridge Oscillator

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

Change the Transient Analysis Limits to this.

Run the Analysis.

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation. On the simulation analysis, use the **Cursor Function** (F8) to measure the period of the waveform. From the period calculate the frequency of oscillation. In this example the period T = 0.67 ms, so $f_{OSC} = 1/T = 1.5$ kHz. Compare this with the results shown on the oscilloscope for the actual circuit. Then compare these results with the expected value of

$$f_{OSC} = 1 / [2 \bullet \pi \bullet \sqrt{(R_1 R_2 C_1 C_2)}]$$

If $R_1 = R_2$ and $C_1 = C_2$, as in this circuit, this equation becomes

$$f_{OSC} = 1 / [2 \cdot \pi \cdot R_1 \cdot C_1]$$

The condition for oscillations to occur is that

RF / R4 > (R1/R2) + (C2/C1)

For this circuit this becomes $R_F / R_4 > 2$, so that if $R_4 = 10 \text{ K}\Omega$, then $R_F > 20 \text{ K}\Omega$. Verify this requirement in the simulation and in the actual circuit by reducing the value of R_F until oscillation ceases.

Exp 4.18 Peak Detector

Set up this circuit in the simulation program and on the proto-board.

Use these Transient Analysis Limits.

📅 Transient Analysis Limits									
Run <u>A</u> dd	<u>D</u> elete Ex	pand Step	pping Properties	<u>H</u> el	p				
Time Range	800ms		Run Options	Normal	-				
Maximum Time Step	0.5ms		<u>S</u> tate Variables	Zero	<u> </u>				
Number of Points 51			C Operating Point						
Temperature Linear 🗾 🛛 27			Coperating Point Only						
			📕 Auto Scale Rang	ges					
Р	X Expression		Y Expression		XRange	Y Range			
1 T		V(VS)			TMAX,TMIN	7V,0,1V			
		V(VO)			TMAX,TMIN	7V,0,1V			

Here are the Stepping Settings.

Transient Analysis Limits								
Run Add Delete Expand Stepping Properties <u>H</u> elp								
Time Range	800ms		<u>R</u> un Options	Normal	•			
Maximum Time Step	5ms		<u>S</u> tate Variables	Zero	<u> </u>			
Number of Points	r of Points 51			└ Dperating Point				
Temperature Linear 💌	27		🔽 Operating Point Only					
			📕 Auto Scale Rar	nges				
Р	X Expression		Y Expression		X Range	Y Range		
1 T		V(VS)			TMAX,TMIN,10	7V,0,1V		
		V(VO)			TMAX,TMIN,10	7V,0,1V		

Modify the **Transient Analysis Limits** to show the "steady state" response in the region from 600 ms to 800 ms.

📅 Transient Analysis Limits									
Run Add Delete Expand Stepping Properties <u>H</u> elp									
Time Range	800ms		<u>R</u> un Options	Normal	•				
Maximum Time Step	5ms		<u>S</u> tate Variables	Zero	<u> </u>				
Number of Points	51		🔽 Operating Poin	nt .					
Temperature Linear 💌	27		🔽 Operating Poin	it Only					
			📕 Auto Scale Ra	nges					
Р	X Expression		Y Expression		X Range	Y Range			
1 T		V(VS)			800ms,600ms,1	7V,0,1V			
		7(70)			800ms,600ms,1	7V,0,1V			

Test the circuit and observe the results on the oscilloscope. Compare the results as seen on the oscilloscope with the simulation.

The decay of the output voltage versus time is given by

$$V_{O}(t) = V_{S} \cdot \varepsilon^{-t/(R1 \cdot C1)}$$

Compare the output voltage level on the oscilloscope at the end of the decay time of 90 ms to the expected value.

Exp 4.19 Band-Pass Amplifier

Set up this circuit in the simulation program and on the proto-board.

Use these A-C Analysis Limits.

Frequency Range	þок,100		<u>R</u> un Options	Normal	<u> </u>	
Number of Points	511		<u>S</u> tate Variables	Zero	-	
Temperature Linear 💌	27		<u>Frequency</u> Step	Log	_	
Maximum Change %	5		🔽 Operating Poin	it	_	
Noise Input	NONE		🔽 Auto Scale Ranges			
Noise Output	2					
Р	× Expression		Y Expression		XRange	Y Range
	F	V(VO)			FMAX,FMIN	100,0,5

Find the maximum gain and the frequency at which the gain is a maximum for the actual circuit. Compare the results with the simulation.

Compare the results with the expected values. The expected values for the maximum gain and the frequency at which the gain is a maximum are given by

f₀ = f_{MAX} =
$$\sqrt{[G_5(G_1+G_4)/C_2C_3]}$$
 / (2 • π)
A_{V(MAX)} = - (R₅/R₁) • C₂/(C₁ + C₂)

If $C_2 = C_3 = C$, then these equations become

$$f_{0} = f_{MAX} = \sqrt{[G_{5}(G_{1}+G_{4})]} / (2 \cdot \pi \cdot C)$$
$$A_{V(MAX)} = -R_{5} / (2 \cdot R_{1})$$

Exp 4.20 Bandwidth of the Band-Pass Amplifier

Use these A-C Analysis Limits.

The line at the value of 68.6 is at the maximum value of the gain divided by $\sqrt{2}$.

Test the circuit and find the two frequencies at which the gain is below the maximum value by a factor of $\sqrt{2}$, and from that determine the bandwidth. Compare the bandwidth with the simulation.

Compare the results with the expected values. The expected values for the bandwidth is given by

$$[G_5(C_2+C_3)/(2 \bullet \pi \bullet C_2 \bullet C_3)]$$

If $C_2 = C_3 = C$, then these this equation becomes
Exp 4.21 Three-Pole Butterworth Low-Pass Filter

Set up this circuit in the simulation program and on the proto-board.

In this case the resistor values are all $1K\Omega \bullet R = 15.9 \text{ k}\Omega$.

Use these A-C Analysis Limits.

Run the Analysis.

This is with the output voltage, Vo on a linear scale.

OPERATIONAL AMPLIFIER

Now use these A-C Analysis Limits to display Vo on a logarithmic (decibel) scale.

Frequency Range	100K,1		<u>R</u> un Options	Normal	<u> </u>		
Number of Points	511		<u>S</u> tate Variables	Zero	-		
Temperature Linear 💌	27		<u>F</u> requency Step	Auto	•		
Maximum Change %	1		🔽 Operating Poin	it	_		
Noise Input	Vs		📕 Auto Scale Ra	Ranges			
Noise Output	Vo						
Р	×Expression		Y Expression		XRange	Y Range	
	F	db(V(Vo))			FMAX,FMIN	1,-20,1	
	F	-3			FMAX,FMIN	1,-20	

Run the Analysis.

The decibel values are given by $V_0(dB) = 20 \cdot Log_{10}(V_0/V_s)$. When V_0 is down by a factor of $1/\sqrt{2}$, the decibel value of the gain is - 3 dB.

Here is a close-up view of the region near the -3 dB frequency (also known as the half-power frequency).

Find the -3 dB frequency on the actual circuit and compare it to the simulation value, and to the value obtained from the equation

 $f(3 dB) = 1 / (2 \cdot \pi \cdot R \cdot C)$

OPERATIONAL AMPLIFIER

Exp 4.22 Slope in the Stop Band

Find the slope of the roll-off in the stop band and compare it to the expected value for a 3-pole filter of $3 \cdot 20 \text{ dB/decade} = -60 \text{ dB/decade}$ which also corresponds to $3 \cdot 6 \text{ dB/octave} = -18 \text{ dB/}$ octave, where an octave is a 2:1 frequency ratio. Do this on the simulation using these analysis limits

Frequency Range	50K,10K		<u>R</u> un Options	Normal	-			
Number of Points	511		<u>S</u> tate Variables	Zero	•			
Temperature Linear 💌	27		<u>F</u> requency Step	Auto	•			
Maximum Change %	1		🔽 Operating Poir	nt	_			
Noise Input	Vs		🔽 Auto Scale Ranges					
Noise Output	Vo							
Р	X Expression		Y Expression		XRange	Y Range		
	F	db(V(Vo))			FMAX,FMIN	0,-40,5		
	F	-3			FMAX,FMIN	0,-40,5		

to get the graph as shown below. Use the cursor function (F8) to measure the transfer ratio at 20 kHz and at 40 kHz as shown below.

Make corresponding measurements on the actual at 20 kHz and 40 kHz, to find the slope of the roll-off and compare results.

Experiment 5.1 Chaos in nonlinear systems

Background:

The theory of nonlinear dynamical systems and Chaos is an intriguing area of mathematics that has received considerable attention in the recent past largely due to our ability to now analyze and describe chaotic behavior that for instance can result from the simplest of iterative maps based on basic algebraic equations. Evidently, nature's complex patterns of behavior can sometimes be described by simple equations running in chaotic mode and possibly leading to observed Fractal patterns. The theory of Chaos has found applications in a wide range of areas from multi-level pseudo-random sequences that may be used in communications and Radar applications to reconfigurable logic gates. It turns out that simple thresholding of inputs and outputs of some basic Chaotic systems can lead to familiar logic behavior on binary inputs leading to familiar logic gates. We note that the fundamental system remains Chaotic, it is only when thresholding is applied that the logical pattern of behavior emerges.

Some of the Navy's highest priorities, such as improved communications, increased bandwidth, improved sensors, and more effective countermeasures for dealing with improvised explosive devices, are currently being addressed by nonlinear dynamics technology.

One application example in NAVY is a nonlinear sensor for magnetic detection. For this application, a variant of stochastic resonance is applied in the design of a nonlinear fluxgate magnetometer to detect the metal in objects that range in size from guns and rifles to the hull of a submarine.

Yet another application of the theory is in design of nonlinear filters to deal with interference and multipath in submarine communication systems. A submarine's ultra high frequency satellite communication (UHF SATCOM) antenna is constrained by the size of the submarine mast and must operate a few inches above the ocean surface where sea states can create dynamic multipath reflections. In addition, UHF SATCOM channels are frequently unusable due to in-band, co-site narrowband interference. For this application, a nonlinear adaptive filter is designed to remove both the interference and multipath signals, thereby increasing the number of usable UHF SATCOM channels while maximizing the data rate.

The Experiment:

The basic ideas of bifurcation and chaos can easily be demonstrated in a simple laboratory experiment with a diode providing the basic nonlinear map. A simple circuit consisting of an inductor, resistor, and diode exhibits chaotic behavior even if the input driving voltage is periodic:

The circuit parameter values for this experiment are as follows:

- Resistance: 200Ω , 5% tolerance (if not 5% it is O.K.)
- Inductance: 25 mH
- Diode: any silicon diode would do (e.g., 1N..)

The diode exhibits two capacitive effects, one due to charge in depletion layer denoted Junction capacitance C_j , one due to time dependence of the injected charge across the depletion layer under forward bias denoted diffusion capacitance of C_d . These are usually modeled as being in parallel but C_j dominates under reverse bias while C_d under forward bias.

The diode's capacitance in conjunction with the resistive and inductive circuit elements produce an RLC resonant circuit. When the driving potential is tuned to this resonance frequency the diode potential exhibits bifurcation as a function of the amplitude of the driving potential.

Experimental Procedure:

- 1. Setup the circuit shown above on a breadboard. The power supply should be set to 1 KHz sinusoidal AC, initially at 100 mV Peak to Peak (PP). All measurements in the rest of this experiment will be based on PP voltages. Make sure the AC signal has no DC level (DC offset should be zero);
- 2. Attach the oscilloscope channel-1 probe across the diode and increase the frequency until the voltage across the diode is maximum. That frequency is the circuit resonance frequency. Record this frequency;
- 3. Decrease the frequency from resonance until the output is 0.707 of maximum value at resonance, call this frequency f₁. Next increase the frequency above resonance till the output is again 0.707 of the maximum value at resonance, call this frequency f_u. The RLC bandwidth is (f_u-f₁). Finally, set the frequency to the value at resonance and for the rest of the experiment, keep the frequency at this level;
- 4. Attach the oscilloscope channel-2 probe across the source. You will be measuring the PP voltage at the input and output (across the diode). It is the plot of the PP voltage at output versus input that shows Bifurcation which is characteristic of Chaotic systems. A typical plot after measurements may look like this:

5. Increase the input voltage amplitude from the 100 mV PP level in increments of 200 mV PP and measure the PP output voltage across the diode. Typical pictures that identify various Bifurcation levels are shown below.

The First level Bifurcation sample picture is shown below (occurs at input of about 1.8 V PP):

To measure the bifurcation levels, use the guide below:

The 2nd level bifurcation picture and the corresponding levels is shown below (occurs at input voltage of about 4.8 V PP):

The Third level Bifurcation (occurs at input voltage level of about 5.6 V PP) may not produce a steady single trace picture. Nonetheless, it is possible to clearly identify splitting of the levels to produce 8 potential levels. The lowest level is very near zero. The other low levels show up as dips whose amplitudes define the levels. The top and bottom part of the trace are shown separately for better clarity on the level splitting:

At onset of Chaos (occurs at input voltage level of about 6.2 V PP), blurring of the levels occur as shown below. The top and bottom of the trace are shown separately for clarity:

At deep Chaos, the levels can be all over the place:

Analysis:

The circuit equivalent of the diode under Forward Bias (FB) and Reverse Bias (RB) when inserted into the overall circuit diagram leads to the following configurations:

(a) Diode forward bias.

(b) Diode reverse bias.

Under FB, the diode behaves like a constant voltage source with voltage level V_f , while under RB it acts like a capacitance of value C_j . Analysis of the circuit under FB with sinusoidal excitation leads to the following; from KVL under FB we get:

$$L\frac{dI}{dt} + RI = V_o \sin(\omega t) + V_f$$

The solution of this differential equation yields:

$$I(t;A) = \frac{V_o}{Z_a} \cos(\omega t - \theta) + \frac{V_f}{R} + Ae^{-Rt/L}$$

Where, V_0 is the peak amplitude of the input sinusoid, $\theta = tan^{-1}\left(\frac{\omega L}{R}\right)$, Z_a is the forward bias impedance given by $Z_a = \sqrt{R^2 + \omega^2 L^2}$ and A is a constant to be determined from initial conditions. The KVL under RB condition gives:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C_j}I = V_o\omega\sin(\omega t)$$

The solution to this equation is given by:

$$I(t; B, \varphi) = \frac{V_o}{Z_b} \cos(\omega t - \theta_b) + Be^{-Rt/2L} \cos(\omega_b t - \varphi)$$

Where, B and φ are constants to be determined from initial conditions and

$$\theta_b = \tan^{-1}\left(\frac{L(\omega^2 - \omega_o^2)}{R\omega}\right), \quad \omega_o^2 = \frac{1}{LC_j}, \quad \omega_b^2 = \omega_o^2 - (\frac{R}{2L})^2$$
$$Z_b = \sqrt{R^2 + \frac{L^2}{R^2}(\omega^2 - \omega_o^2)}$$

These equations hold valid when the diode drive current is not very large. The nonlinear behavior that leads to Chaos arises due to the fact that the diode cannot switch from FB to RB and vice versa instantaneously and indeed the diode continues to conduct for a period of time τ after the instant of switching. This recovery time is actually dependent on the magnitude of the forward current in the diode $|I_m|$ and is given by:

$$\tau = \tau_m (1 - e^{-|I_m|/I_c})$$

Where, τ_m and I_c are constants that depend on the diode in use

The figure below illustrates the mechanism of first Bifurcation:

When the circuit is operated at the resonant frequency, some reverse current will flow through the diode in every reverse bias cycle due to the finite recovery time of the diode. If the peak current $|I_m|$ is large in the conducting cycle (interval 'a'), the diode will turn off with a certain delay (interval 'b') due to the finite recovery time and so will allow a current to flow even in the reverse-bias cycle. This reverse bias current, in turn, will prevent the diode from instantly switching on in the forward bias cycle and the diode will turn *on* with a delay (interval 'c'). This will keep the forward peak current smaller than in the previous forward bias cycle, hence leading to two distinct peaks of the forward current. Since it takes *two* cycles of the driving signal in this process t get back to the initial scenario, we identify this as a perioddoubling bifurcation. As the input is further increased, another period doubling Bifurcation occurs and now four possible current levels can exist in the diode. This process continues until Chaos where a multitude of levels are possible.

Calculations and Results:

- 1. From measured resonance and upper and lower frequencies determine the RLC quality factor Q given by $Q = \frac{f_0}{(f_n f_1)}$, and compare the value to the theory given by $Q = \frac{\omega_0 L}{R}$;
- 2. From the measured resonance frequency, determine the junction capacitance from $\omega_{o} = \frac{1}{\sqrt{LC_{i}}}$
- 3. Plot the Bifurcation diagram (i.e., PP output versus input voltage) up to the edge of third Bifurcation as shown in the figure above;
- 4. From two measured recovery times after the first Bifurcation, determine the constants τ_m and I_c for the diode you are using.