Math 2550-03

$$
4 / 25 / 24
$$

Recall from Tuesday last week
$A$ is an $n \times n$ matrix.

$$
A \vec{x}=\lambda \vec{x}, \vec{x} \neq \overrightarrow{0}
$$

$\lambda \leftarrow$ eigenvalue
$\vec{x} \leftarrow$ eigenvector
You can find the eigenvalues of $A$ by solving the characteristic polynomial

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

$$
E_{\lambda}(A)=\{\vec{x} \mid A \vec{x}=\lambda \vec{x}\}
$$

Eigenspace for $\lambda$

Facts/Defs
Let $A$ be an $n \times n$ matrix.
Let $\lambda$ be eigenvalue of $A$.
(1) The eigenspace $E_{\lambda}(A)$ is a subspace of $\mathbb{R}^{n}$.
(2) The dimension of $E_{\lambda}(A)$ is called the geometric multiplicity of $\lambda$.
(3) The algebraic multiplicity of $\lambda$ is the multiplicity of $\lambda$ as a root of the characteristic polynomial of $A$.
(4) $\binom{$ geometric multiplicity }{ of $\lambda} \leqslant\left(\begin{array}{c}\text { algebraic } \\ \text { mullipiplicty } \\ \text { of } \lambda\end{array}\right)$

Example we started last time 3

$$
A=\left(\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

characteristic polynomial:

$$
\begin{aligned}
& \text { characteristic polynomial: } \\
& \operatorname{det}\left(A-\lambda I_{3}\right)=-(\lambda-2)^{2}(\lambda-1)^{(1)}
\end{aligned}
$$

| eigenvalue $\lambda$ | algebraic <br> multiplicity <br> of $\lambda$ |
| :---: | :---: |
| $\lambda=1$ | 1 |
| $\lambda=2$ | 2 |

We also found a basis for

$$
E_{1}(A)=\{\vec{x} \mid A \vec{x}=1 \cdot \vec{x}\}
$$ it was $\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$. Thus, the geometric multiplicity of $\lambda=1$ is $\operatorname{dim}\left(E_{1}(A)\right)=\underbrace{1}_{\substack{\text { I vector } \\ \text { in basis }}}$

Let's now find a basis for $E_{2}(A)=\{\vec{x} \mid A \vec{x}=2 \vec{x}\}$ Want to solve $A \vec{x}=2 \vec{x}$. So need to solve

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+A \vec{A}=2 \vec{x} \\
\left(\begin{array}{cc}
a+2 b+c \\
a & +3 c
\end{array}\right) & =\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right) \\
\left(\begin{array}{cc}
-2 a & -2 c \\
a & +c \\
a & +c
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
-2 a & -2 c
\end{aligned}=0
$$

Let's solve:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives:

$$
\begin{aligned}
a+c & =0 \\
0 & =0 \\
0 & =0
\end{aligned} \quad \begin{array}{ll}
\text { leading: } a \\
& \text { free: } c, b
\end{array}
$$

Solution:

$$
\begin{aligned}
& b=t \\
& c=u \\
& a=-c=-u
\end{aligned}
$$

Thus, if $\vec{x}$ solves $A \vec{x}=2 \vec{x}$ then

$$
\begin{aligned}
\vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =\left(\begin{array}{c}
-u \\
t \\
u
\end{array}\right) \\
& =\left(\begin{array}{c}
-u \\
0 \\
u
\end{array}\right)+\left(\begin{array}{l}
0 \\
t \\
0
\end{array}\right) \\
& =u\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

So all solutions of $\overrightarrow{A x}=2 \vec{x}$ are linear combinations of $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Thus, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ span the eigenspace $E_{2}(A)$.
You can verify that $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are linearly independent.

Thus, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is a basic for $E_{2}(A)$, So, $\lambda=2$ has geometric multiplicity $\operatorname{dim}\left(E_{2}(A)\right)=2$.

Summary table for $A$ :

| eigenvalue <br> $\lambda$ | alg. multi. <br> of $\lambda$ | basis for <br> $E_{\lambda}(A)$ | geometric <br> molt. |
| :---: | :---: | :---: | :---: |
| $\lambda=1$ | 1 | $\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ | 1 |
| $\lambda=2$ | 2 | $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ | 2 |

Ex: $(H W 8$ \# $1(b))$
Let $A=\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
Find the eigenvalues, basis for each eigenspace, alg. \& geom. mut, of each eigenvalue.

Eigenvalue time!

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{2}\right)= \\
&= \operatorname{det}\left(\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
&=\operatorname{det}\left(\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)+\left(\begin{array}{cc}
-\lambda & 0 \\
0 & -\lambda
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right) \\
& =(10-\lambda)(-2-\lambda)-(-9)(4) \\
& =-20-10 \lambda+2 \lambda+\lambda^{2}+36 \\
& =\lambda^{2}-8 \lambda+16 \\
& =(\lambda-4)(\lambda-4) \\
& =(\lambda-4)^{2}
\end{aligned}
$$



Let's get a basis for

$$
E_{4}(A)=\{\vec{x} \mid A \vec{x}=4 \vec{x}\}
$$

Need to solve $A \vec{x}=4 \vec{x}$.
Let's solve!

$$
\begin{aligned}
& \left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)\binom{a}{b}=4\binom{a}{b} \leftarrow \widehat{A \vec{x}=4 \vec{x}} \\
& \binom{10 a-9 b}{4 a-2 b}=\binom{4 a}{4 b} \\
& \binom{6 a-9 b}{4 a-6 b}=\binom{0}{0}
\end{aligned}
$$

This gives:

$$
\begin{aligned}
& 6 a-9 b=0 \\
& 4 a-6 b=0
\end{aligned}
$$

Solving:

$$
\begin{aligned}
\left(\begin{array}{ll|l}
6 & -9 & 0 \\
4 & -6 & 0
\end{array}\right) & \xrightarrow{\frac{1}{6} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
4 & -6 & 0
\end{array}\right) \\
& \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So we get:

$$
\begin{aligned}
a-\frac{3}{2} b & =0 \\
0 & =0 \quad \text { leading :a }: b
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& b=t \\
& a=\frac{3}{2} b=\frac{3}{2} t
\end{aligned}
$$

Thus if $\vec{x}$ solves $A \vec{x}=4 \vec{x}$
then $\vec{x}=\binom{a}{b}=\left(\begin{array}{cc}3 / 2 & t \\ t\end{array}\right)=t\binom{3 / 2}{1}$

Thus, a basis for $E_{4}(A)$ is $\binom{3 / 2}{1}$. Thus, $\lambda=4$ has geometric multiplicity $\operatorname{dim}\left(E_{4}(A)\right)=1$

Summary table for A

| eigenvalue <br> $\lambda$ | alg. <br> mut <br> of $\lambda$ | basis for <br> $E_{\lambda}(A)$ | geometric <br> multi. <br> of $\lambda$ |
| :---: | :---: | :---: | :---: |
| $\lambda=4$ | 2 | $\binom{3 / 2}{1}$ | 1 |

