Math 2550-01

$$
4 / 25 / 24
$$

Recall from Tuesday last week
$A$ is an $n \times n$ matrix
$A \vec{x}=\lambda \vec{x}$ where $\vec{x} \neq 0$
$\lambda \leftarrow$ eigenvalue
$\vec{x} \leftarrow$ eigenvector
You can find the eigenvalues of $A$ by solving

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

$$
E_{\lambda}(A)=\{\vec{x} \mid A \vec{x}=\lambda \vec{x}\}
$$

eigenspace for $\lambda$

Facts/Defs
Let $A$ be an $n \times n$ matrix with eigenvalue $\lambda$.
(1) The eigenspace $E_{\lambda}(A)$ is a subspace of $\mathbb{R}^{n}$.
(2) The dimension of $E_{\lambda}(A)$ is called the geometric multiplicity of $\lambda$
(3) The algebraic multiplicity of $\lambda$ is the multiplicity of $\lambda$ as a coot of the characteristic polynomial of $A$.
(4) $\left(\begin{array}{c}\text { geometric } \\ \text { multiplicity } \\ \text { of } \lambda\end{array}\right) \leq\left(\begin{array}{c}\text { algebraic } \\ \text { multiplicity } \\ \text { of } \lambda\end{array}\right)$

Example we started last tine

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right) \\
& \operatorname{det}\left(A-\lambda I_{3}\right)=-(\lambda-2)^{\sqrt{2}(\lambda-1}(\lambda)
\end{aligned}
$$

| Eigenvalue | algebraic multiplicity |
| :---: | :---: |
| $\lambda=1$ | 1 |
| $\lambda=2$ | 2 |

A basis for eigenspace $E_{1}(A)$ for $\lambda=1$ is $\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$. $\operatorname{So}, \operatorname{dim}\left(E_{1}(A)\right)=1$.
Thus, the geometric multiplicity of $\lambda=1$ is 1 .

Let's now get a basis for $E_{2}(A)$. We need to solve $A \vec{x}=2 \vec{x}$. So, need to solve

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =2\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
\left(\begin{array}{cc}
a+2 b+c \\
a+ & -2 c \\
a & +3 c
\end{array}\right) & =\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right) \\
\left(\begin{array}{cc}
-2 a & -2 c \\
a & +c \\
a & +c
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Need to solve

$$
\begin{aligned}
-2 a & -2 c
\end{aligned}=0
$$

Let's solve it!

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \underset{-R_{1}+R_{3} \rightarrow R_{3}}{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We get

$$
\begin{aligned}
a+c & =0 \\
0 & =0 \\
0 & =0
\end{aligned}
$$

leading: a free: b, c

Solution:

$$
\begin{aligned}
& b=t \\
& c=u \\
& a=-c=-u
\end{aligned}
$$

Thus, if $\vec{x}$ solves $A \vec{x}=2 \vec{x}$ then

$$
\begin{aligned}
\vec{x}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) & =\left(\begin{array}{c}
-u \\
t \\
u
\end{array}\right) \\
& =\left(\begin{array}{c}
-u \\
0 \\
u
\end{array}\right)+\left(\begin{array}{c}
0 \\
t \\
0
\end{array}\right) \\
& =u\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Thus, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ can make any $\vec{x}$ that solves $A \vec{x}=2 \vec{x}$.
So, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ span the eigenspace $E_{2}(A)$
you can verify that $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are linearly independent.
So, $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ is a basis for $E_{2}(A)$.

So, $\operatorname{dim}\left(E_{2}(A)\right)=2$.
Thus, the geometric multiplicity of $\lambda=2$ is 2 .

Summary table

| eigenvalue $\lambda$ | alg. mull, <br> of $\lambda$ | basis for <br> ExCA1 <br> $\lambda$ | geometric <br> mull. $\lambda$ |
| :---: | :---: | :---: | :---: |
| $\lambda=1$ | 1 | $\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ | 1 |
| $\lambda=2$ | 2 | $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ | 2 |

Ex: $(H W 8$ \# $1(b))$

$$
\text { Let } A=\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)
$$

Find eigenvalues, basis for each eigenspace, alg. \& geometric mull. of each eigenvalue.

Eigenvalue time!

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{2}\right)^{\kappa}= \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)+\left(\begin{array}{cc}
-\lambda & 0 \\
0 & -\lambda
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(10-\lambda)(-2-\lambda)-(-9)(4) \\
& =-20-10 \lambda+2 \lambda+\lambda^{2}+36 \\
& =\lambda^{2}-8 \lambda+16 \\
& =(\lambda-4)(\lambda-4) \\
& =(\lambda-4)^{2}
\end{aligned}
$$

The only eigenvalue is $\lambda=4$,
The algebraic multiplicity of $\lambda=4$ is 2 .

Let's find a basis for the eigenspace $E_{4}(A)=\{\vec{x} \mid \vec{x}=4 \vec{x}\}$

Let's solve!

$$
\begin{aligned}
\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right)\binom{a}{b} & =4\binom{a}{b} \quad \leftrightarrow \overrightarrow{A x}=4 \vec{x} \\
\binom{10 a-9 b}{4 a-2 b} & =\binom{4 a}{4 b} \\
\binom{6 a-9 b}{4 a-6 b} & =\binom{0}{0}
\end{aligned}
$$

Need to solve:

$$
\begin{aligned}
& 6 a-9 b=0 \\
& 4 a-6 b=0
\end{aligned}
$$

Solving we get:

$$
\begin{aligned}
& \text { Solving we get. } \\
& \left(\begin{array}{ll|l|l}
6 & -9 & 0 \\
4 & -6 & 0
\end{array}\right) \xrightarrow{\frac{1}{6} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
4 & -6 & 0
\end{array}\right) \\
& \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives:

$$
a-\frac{3}{2} b=0
$$

leading: a

$$
0=0
$$ free: b

Thus,

$$
\begin{aligned}
& b=t \\
& a=\frac{3}{2} b=\frac{3}{2} t
\end{aligned}
$$

Ergo, any solution $\vec{x}$ to $\vec{A}=4 \vec{x}$ is of the form

$$
\begin{aligned}
& f \text { the form } \\
& \vec{x}=\binom{a}{b}=\left(\begin{array}{c}
\frac{3}{2} \\
t \\
t
\end{array}\right)=t\binom{3 / 2}{1}
\end{aligned}
$$

Thus, a basis for $E_{4}(A)$ is $\binom{3 / 2}{1}$. So the geometric multiplicity of $\lambda=4$ is $\operatorname{dim}\left(E_{4}(A)\right)=1$

Summary table for $A=\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$

| Eigenvalue $\lambda$ | alg, mut. <br> of $\lambda$ | basis for <br> $E_{\lambda}(A)$ | geometric <br> mult. |
| :---: | :---: | :---: | :---: |
| $\lambda=4$ | 2 | $\binom{3 / 2}{1}$ | 1 |

