

Recall from Tuesday last week
A is an nxn matrix

$$A\vec{x}=\lambda\vec{x}$$
 where $\vec{x}\neq 0$
 $\lambda \in eigenvalue$
 $\vec{x} \in eigenvalue$
You can find the eigenvalues
of A by solving
 $det(A-\lambda In) = 0$
 $E_{\lambda}(A) = \{\vec{x} \mid A\vec{x} = \lambda\vec{x}\}$
eigenspace for λ

Facts / Defs Let A be an nxn matrix with eigenvalue X. () The eigenspace $E_{\lambda}(A)$ is a subspace of IR¹. 2) The dimension of E_X(A) is called the geometric multiplicity of A (3) The algebraic multiplicity of A is the multiplicity of & as a root of the characteristic polynomial of A. $\left(\begin{array}{c} \text{geometric}\\ \text{multiplicity}\\ \text{of }\lambda\end{array}\right) \leq \left(\begin{array}{c} \text{algebraic}\\ \text{multiplicity}\\ \text{of }\lambda\end{array}\right)$ (4)

Example we started last time

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

$$det(A - \lambda I_{3}) = -(\lambda - 2)(\lambda - 1)^{1}$$
Eigenvalue algebraic multiplicity
$$\lambda = 1 \qquad 1$$

$$\lambda = 2 \qquad Z$$

A basis for eigenspace
$$E_{i}(A)$$
 for $\lambda=1$
is $\binom{-2}{i}$. So, dim $(E_{i}(A))=1$.
Thus, the geometric multiplicity
of $\lambda=1$ is 1.

Let's now get a basis for
$$E_2(A)$$
.
We need to solve $A\vec{x} = 2\vec{x}$.
So, need to solve
 $\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} a \\ b \\ c \end{pmatrix}$
 $\begin{pmatrix} -2c \\ a+2b+c \\ a & +3c \end{pmatrix} = \begin{pmatrix} 2a \\ 2b \\ 2c \end{pmatrix}$
 $\begin{pmatrix} -2a & -2c \\ a & +c \\ a & +c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Need to solve

$$-2\alpha - 2c = 0$$

 $\alpha + c = 0$
 $\alpha + c = 0$

Let's solve it!

$$\begin{pmatrix}
-2 & 0 & -2 & | & 0 \\
1 & 0 & 1 & | & 0 \\
1 & 0 & 1 & | & 0
\end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix}
1 & 0 & | & 0 \\
-2 & 0 & -2 & | & 0 \\
-2 & 0 & -2 & | & 0 \\
1 & 0 & 1 & | & 0
\end{pmatrix}$$

$$\frac{ZR_1 + R_2 \rightarrow R_2}{-R_1 + R_3 \rightarrow R_3} \begin{pmatrix}
1 & 0 & | & 0 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

We get

$$a + c = 0$$

 $0 = 0$
 $0 = 0$

Solution:

$$b = t$$

 $c = u$
 $\alpha = -c = -u$

Thus, if
$$\vec{x}$$
 solves $A\vec{x} = 2\vec{x}$ then
 $\vec{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -u \\ u \\ u \end{pmatrix}$
 $= \begin{pmatrix} -u \\ u \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}$
 $= u \begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
Thus, $\begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ can make any
 \vec{x} that solves $A\vec{x} = 2\vec{x}$.
So, $\begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ span the eigenspace $E_2(A)$
You can verify that $\begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}$ is a basis for $E_2(A)$.
So, $\begin{pmatrix} -i \\ 1 \\ 0 \end{pmatrix}$ is a basis for $E_2(A)$.

S_{0} , $dim(E_{2}(A)) = Z$.			
Thus, the geometric multiplicity			
$ot \lambda = 2$ is Z.			
Summary tuble			
Ciyenvalue X	alg. mult.	basis for EXCAI	geometric mult. 7
$\lambda = 0$		$\begin{pmatrix} -2 \\ l \\ l \end{pmatrix}$	
$\lambda = Z$	2	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	2
l			· · · · · · · · · · · · · · · · · · ·

Ex: (HW 8 #1(6)) Let $A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$ tind eigenvalues, basis for each eigenspace, aly. & geometric mult. of each eigenvalue. characteristic polynomial Eigenvalue fime! $det(A - \lambda I_z) =$ $= det \left(\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} - \lambda \begin{pmatrix} 10 \\ 0 & 1 \end{pmatrix} \right)$ $= det \left(\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} + \begin{pmatrix} -\lambda & 0 \\ 0 & -\lambda \end{pmatrix} \right)$ -9 -2-2) $= det \begin{pmatrix} 10 - \lambda \\ 4 \end{pmatrix}$

$$= (10 - \lambda)(-2 - \lambda) - (-9)(4)$$

$$= -20 - 10\lambda + 2\lambda + \lambda^{2} + 36$$

$$= \lambda^{2} - 8\lambda + 16$$

$$= (\lambda - 4)(\lambda - 4)$$

$$= (\lambda - 4)^{2}$$
The only eigenvalue is $\lambda = 4$.
The algebraic multiplicity
of $\lambda = 4$ is 2.
Let's find a basis for the
eigenspace $E_{4}(A) = \{\vec{x} \mid A\vec{x} = 4\vec{x}\}$

Let's solve!

$$\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} 9 \\ 6 \end{pmatrix} = 4 \begin{pmatrix} 9 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 10a - 9b \\ 4a - 2b \end{pmatrix} = \begin{pmatrix} 49 \\ 4b \end{pmatrix}$$

$$\begin{pmatrix} 6a - 9b \\ 4a - 6b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
Need to solve:

$$\begin{pmatrix} 6a - 9b = 0 \\ 4a - 6b = 0 \end{bmatrix}$$
Solving we get:

$$\begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} 1 & -3/2 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$-\frac{4R_{1} + R_{2} \rightarrow R_{2}}{2} \begin{pmatrix} 1 & -3/2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives:

$$a - \frac{3}{2}b = 0$$

 $b = 0$
 $free: b$

Thus, b=t Q=≟b=≟t Ergo, any solution x to Ax=4x is of the form $\begin{array}{c} \neg \\ \chi = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{3}{2}t \\ t \end{pmatrix} = t \begin{pmatrix} \frac{3}{2} \\ l \end{pmatrix}$ Thus, a basis for Ey(A) is (312). So the geometric multiplicity of $\lambda = 4$ is dim $(E_4(A)) = 1$

Summary tuble for
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$

Eigenvalue λ alg. mult. basis for geometric
 $\Delta = 4$ Z $\begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$ L