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ITERATIVE CIRCUITS 

 
 

Text: Mano, Digital Design, Ch's 3, 4 and 6. 

Required chips: 7476: JK-flipflops (2 chips), and some or all of:  

                         7402: NOR,         7408: AND,         7432: OR,         7486: XOR. 

13.1*  First read the background discussion in Appendix 1 on iterative circuits, then continue here. 
 

One of the simplest forms of an iterative 

circuit is a chain in which each stage is just an 

AND gate with 2 inputs, one parallel and one 

serial, and a serial output. Similar chains can 

be constructed of OR or XOR gates. You 

might use such a chain instead of a single large 

gate. Thus, a string of 16 AND gates could 

replace a single 16-input AND, since such 

large gates are not available in SSI or MSI 

chips. As discussed in Appendix 1, the relatively long time delay could be a disadvantage. 
 

One possible application for a such a chain of AND gates would be an "All-High" detector. The output of 

the chain would go high only when all parallel inputs are high. (The serial input to the first gate must 

always be high; i.e. 5V). This really amounts to single large AND distributed along a chain. 
 

 Do this in lab: create an "All-Low" detector using a chain of 4 gates, such that the output of the chain 

goes low only when all parallel inputs are low. (Here the serial input to the first gate must always be low; 

i.e. ground.) Assume inputs, X3..X0 from switches. Use 1 chip (with what kind of gates?). Connect the 

output of the chain to an LED. Demonstrate the circuit for your instructor. 

------------------------------------------------------------------------------------------------------------------------------ 
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13.2*  Build a simplified Iterative Comparator:  this circuit will be an inequality detector. It will compare 

two 4-bit numbers, X = (X3..X0) and Y = (Y3..Y0) using a chain of four identical stages. Each stage 
contains two different gates, one in parallel, the other in series. The output of the chain should go high if 
the two numbers are different. (The circuit won't detect which is larger, just whether they are unequal.)  
 

The upper gate checks to see if its two parallel inputs, Xn and Yn, 
are the same. If so, it outputs a 0; if they are different, it outputs a 
1. (What kind of gate will do this?) The lower gate combines this 
output along with the output of the previous stage, Zn, and passes it 
up the chain as Zn+1. If even one input to the lower gate equals 1, 
then Zn+1 should equal 1. And if this happens at any stage in the 
chain, then the output of the entire chain (connected to an LED) 
will also equal 1 (why?). This indicates that at least one pair of Xn-
Yn components do not match, so X and Y themselves must be unequal.  
 

Question: should the serial input to the first stage be a 1 or a 0? Be prepared to justify your choice.  Your 
design should use 2 chips only. Try to make all stages identical so additional stages could be added at 
either end. (Can you see how this circuit incorporates an "All-Low" detector?) 
 

Draw the circuit with schematic-capture software. Build it with the 4-bit inputs X and Y coming from 

switches. Test it first with X = Y (all bit pairs equal) and then with X  Y (at least one pair different). 

Demonstrate circuit behavior for your instructor. 
------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

13.3  Iterative Up/Down Counter: (design only). Read Appendix 2 on up-counters, then continue here. 
 

The circuit below is a 2-bit up-down 
counter; it counts up 0-1-2-3-0-etc. or 
down 3-2-1-0-3-etc..  

 When CE = 0, counting stops; when 
CE = 1, counting proceeds. 

 When SEL = 0, the counter counts 
up; when SEL = 1, it counts down. 

 

 
 

(NOTE: For something similar to the SEL control used here, refer to Exp 6.2. There a select input changes 
a circuit from an adder to a subtractor.) 
 

 These flip-flops act like T's because J=K.  
 Assume flip-flop CLKs are connected to a pulser. Also, except when flip-flop outputs A1A0 are intitially     

cleared to 00, the CLR inputs should be connected to Vcc (i.e. made inactive) along with the PRE inputs. 

X Y

Zn Zn+1 
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The circuit inside the dashed block (flip-flop A0 and the two gates) is the iterative module. If the counter 

had more than two flipflops, then each one, except the last (at the left), would look exactly like A0's circuit. 

This would require that the wire from the SEL input be continued across the whole counter. Because this is 

only a 2-bit counter, the last flipflop, A1, doesn't need any gates since there is nothing to its left. 
 

Note that if count is enabled (CE=1), then T0 must equal 1 since the least-significant bit of any counter (A0 

in this case) always toggles when the clock comes. The question is what happens to A1 when count is 

enabled and the clock comes--when does it toggle and when not. The answer depends both on A0 and SEL. 

 

1) In the state table at the right, assume CE = 1, which means 

that T0 is always 1. Fill in the values for T1 and for the next-

state values of A1 A0 based on an analysis of the given circuit. 

Your answers should show whether the circuit is an up-down 

counter. 
 

Explain your results to your instructor. Next-state values for  

A1 A0 must be consistent with the values of T1 you show in the 

table.  

 

2) Find the rule for down-counters, similar to the one in Appendix 2 for up-counters, from the following 2-

count sequence, shown in binary and decimal: 
 

    1 0 1 1 0 0 0 0         176 

    1 0 1 0 1 1 1 1         175   
 

Here, again, the flipflops that toggled are underlined. In a down-counter, the last one always toggles (same 

as in an up-counter). But what rule explains why the other four toggled? Make sure you give a clear answer 

to this question in your report. 
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APPENDIX 1 

ITERATIVE CIRCUITS 

 

An iterative circuit consists of a chain of identical modules or input 

stages. Stages can be sequential or combinatorial (i.e. with or 

without flipflops). Each module can have parallel and serial inputs 

and outputs. The serial inputs and outputs propagate information 

from one stage to the next along the chain. This diagram consists of a 

chain of AND gates  

 
Consider, for example, an N-bit iterative adder consisting of N identical full-adder stages. The 4-bit 
adder/subtractor in the textbook (Fig. 4-13) is a case in point. Each stage includes parallel inputs An, Bn, 
and an output sum bit, Sn. There are also serial input and output carries, Cn and Cn+1, which carry 
information from stage to stage. 
 

The advantage to an iterative circuit is ease of design and construction. Designing a full-adder stage with 3 

inputs and 2 outputs requires a truth-table with only 3+2 = 5 columns and 23 = 8 rows. Once designed, one 

has only to string together as many stages as desired; i.e. a 4-bit adder would require 4 identical full-adder 
stages--that's the whole design. Contrast this with designing the entire 4-bit adder at once. It would take a 

truth-table with 9 input columns (A3..A0, B3..B0, and C0), 5 output columns (S3..S0 and C4), and 29 = 

512 rows!  (Designing an 8- or 16-bit adder this way would be infinitely worse.) 
 

The price you pay for ease of design is lower speed of operation. In each full-adder stage, the carry must 
propagate through two gates (see diagram in textbook). There is a small time delay associated with each 
gate on the order of, say, 10 nanosec's. Now consider the case of a 16-stage iterative adder performing the 
following sum:   
 

     A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

   +B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

The carry generated by A0+B0 = 1+1 must "ripple" up the chain through 15 more stages before the sum 

stabilizes at all 0's. This can take something like 16∙2∙10 = 320 nanosec's or 0.32 s, which is a long time 

for many applications. It means that none of the inputs (An or Bn) should change more often than once per 

0.32 s or 3 times per s. In other words, the data rate into the adder must be less than 3MHz. For high-

speed circuits (like microprocessors) this is much too slow. 
 

To avoid this kind of problem, most commercial adder chips, like the 7483 used in Experiment 6, have 
extra "look-ahead" carry circuitry which brings carry information immediately to all stages so there is no 
need to wait for it to ripple up the chain. One could chain four 7483's together and thereby take advantage 
of this fast look-ahead carry feature to drastically reduce overall delay in a 16-bit design. 
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APPENDIX 2 

ANALYSIS OF AN UP-COUNTER 

 

Refer to the diagram of Fig. 6-12 in the text. This is a 4-bit iterative up-counter, each stage of which 

consists of a JK-flipflop connected as a "T" (i.e. J = K) plus a 2-input AND which is part of a chain of 

gates. The serial input to each stage comes from the chain of ANDs and goes to the J-K inputs. (The 

output-carry gate at the bottom is positioned differently than the other ANDs but is just a continuation of 

the chain.) 

 

Now look at any stage in the chain. When the output of the chain of gates going into that stage is high, the 

flipflop will toggle on the next clock, since J=K=1. This happens only when the outputs of all previous 

flipflops are high. For example, A3 toggles only when A2=A1=A0=1. On the other hand, if at least one of 

the previous flipflops is low, A3 will not change state, since J=K=0. 

 

To see where this rule comes from, observe the following two consecutive count states in an 8-bit counter: 

 

        Binary           Decimal 

    1 0 1 0 1 1 1 1        175          

     1 0 1 1 0 0 0 0        176 

 

The underlined 5 bits represent flipflops which changed state. The least-significant bit always toggles in a 

counter, but the other 4 toggled because, in each case, all the bits to their right were 1's. The first 3 flipflops 

did not toggle because each had at-least-one 0 to its right. Since this is the way counting is done in base-2, 

the counter must be designed accordingly. 

------------------------------------------------------------------------------------------------------------------------------ 

 


