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EXPERIMENT  11 

SEQUENTIAL CIRCUITS 
 
Text: Mano and Ciletti, Digital Design, 5th Edition, Chapter 5 (Sequential circuit design with D flip-flops). 
Required chips: 7474: dual D-Flip-flop, plus the following: 
    7400: NAND (for 11.2 only), 7410: NAND (triple 3-input), 7402: NOR (for 11.3 only). 
                                                       

11.1  As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output 
of the circuit depends not only on the input, as in combinational logic circuits, but also on the sequence of 
past inputs that are used to determine the state of the circuit.   
 
As we observed in Experiment 10, flip-flops can be used to hold (remember) the state of the system.  Each 
flip-flop holds one bit of data and can be used to represent one state variable within a system.  A system 
that has N states will require log2N state variables and hence log2N flip-flops.  If N is not a power of two, 
then you have to round log2N up to the nearest integer.   
 
For example, if you need 4 states, you will need two state variables.  Let’s assume that the names of the 
state variables are A and B.  Then the four states are provided by the following values of A and B:  
AB = 00, 01, 10, and 11.  If you need 8 states, you will need three state variables, for example, A, B, and C, 
where (ABC = 000, 001, 010, 011, 100, 101, 110, and 111). And if you need 6 states, you still need three 
state variables since log26 = 2.58 which will be 3 after rounding up (since you can’t have a fractional 
number of state variables).  In this case, you could use any 6 of the 8 states, leaving the other 2 unused. 
 
For example, if you had an elevator controller for a building that had floors 1 through 6, the states would 
likely be: 001 (1), 010 (2), 011 (3), 100 (4), 101 (5), and 110 (6), with states 000 (0) and 111 (7) unused. 
 
A state diagram is used to represent the behavior of a sequential system where the state is represented by a 
circle and the transitions between states is represented by an arrow (also called an edge or arc).   The state 
diagram below represents a 2-bit saturating up/down counter.   
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There are two state variables, A and B, and one control input U.  When U = 1, the counter will count up 
with each clock trigger until it reaches state AB = 11 where it will remain until U is changed to 0 (i.e. the 
counter is saturated).  Similarly, when U = 0, the counter will count down until it reaches the lowest count 
AB = 00 where it will remain until U is changed to 1. If U is changed whenever the upper or lower limit 
state is reached, the system will oscillate up and down from 00 to 11 and back. 
 
 

 
 
 
 
 
 
 
To understand how to read a state diagram, first note that the values of U appear alongside the arrows. 
Next, let’s consider the possible transitions from state one (01). There are two possible next states: 00 and 
10 (this can be determined by looking at the two arrows leaving state 01).  On the triggering clock edge, 
state 01 will transition to state 00 if the input U = 0 (that is it will count down from state 01 to state 00) or 
transition to state 10 if the input U = 1 (that is it will count up from state 01 to state 10).  Now suppose it 
goes to state 00. If U = 1, it will transition back to state 01. But if U = 0, it remains in state 00. 
 

The following block diagram shows the overall design of a sequential circuit.  The flip-flops are used to 
hold the state of the system.  The Q outputs of the flip-flops represent the current state of the system or the 
present state. In the saturating counter example, the present state represents the current counter value (for 
example: state AB = 01 so count is 1).  The state will change or transition when triggered by the clock (in 
Experiment 10 we learned that there are positive-edge triggered flip-flops and negative-edge triggered flip-
flops).   
 
The present state of the circuit and any external inputs to the circuit are used to determine the flip-flop 
inputs which will be used to determine the next state of the system.  In this experiment we are using D flip-
flops.  Since the next state of a D flip-flop follows the D input, the flip-flop inputs actually will be the same 
as the next state (this is not true for the other types of flip-flops, SR, JK, and T).  In the saturating counter 
example, if the present state is AB = 01 and the input is U = 0, the next state will be AB = 00.  If we are 
using D flip-flops to design the saturating counter, then the D flip-flop inputs will be the same as the next 
state, or 00 (DA = 0 and DB = 0).  Note, you can use any type of flip-flop in a sequential logic design but 
the flipflop inputs will be different depending on the type of flip-flop used. 
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The saturating counter example does not have an output (other than the state of the counter).  Referring to 
the elevator example in Experiment 10, the state of the system would be the current floor that the elevator 
is on, the input would be the buttons pushed to call the elevator, and the output would be used to control the 
motors to make the elevator go up and down.  As we will see in this experiment, sometimes the output 
depends on both the present state and the inputs (for a Mealy machine) and sometimes the output just 
depends on the present state (for a Moore machine). 
 

 
 
A state table is used to design the combinational circuit within a sequential circuit.  A state table differs 
from a truth table in that in addition to inputs and outputs, it also represents both the present state of the 
system (as an input) and the next state of the system (as an output).  Below is the state table for the 
saturating up/down counter: 
 

Input Present State 
(p.s.) 

Next State 
(n.s.) 

Flip-Flop Inputs 

U A B A B DA DB 

0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 0 0 1 0 1 
0 1 1 1 0 1 0 
1 0 0 0 1 0 1 
1 0 1 1 0 1 0 
1 1 0 1 1 1 1 
1 1 1 1 1 1 1 

 
Notice in the state table that the State Variables are shown twice, both as the present state value (before the 
clock trigger) and as the next state value (after the clock trigger).  To design the combinational logic 
circuit, we need to follow these steps. 
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1. Derive the state table based on the desired behavior of the sequential circuit (represented by the 
state diagram. 

2. Given the present and next states, based on the type of flip-flops used determine the flip-flop inputs 
(since we are using D flip-flops, notice how the flip-flop inputs are the same as the next state values 
for states A and B).   

3. Use K-maps to determine the combinational logic equations for the flip-flop inputs as a function of 
the sequential circuit input(s) and present state.  (Note, the K-maps will give us the minimum sum-
of-product combinational logic equation). 

4. If the sequential circuit has explicit output(s), use K-maps to determine the combinational logic 
equations for the outputs as a function of the sequential circuit input(s) and present state (for Mealy 
machines) or only as a function of the present state (for Moore machines). 

5. Draw the logic diagram with one flip-flop per state variable, the combinational logic circuits for the 
flip-flop inputs and if used, the combinational logic circuits for the sequential circuit outputs (we 
don’t have outputs in our saturating counter example). 

 
DA   B  

U\AB 00 01 11 10  
0 0 0 1 0  
1 0 1 1 1 U 

  A   
 

DA = UA + AB + UB 
DB   B  

U\AB 00 01 11 10  
0 0 0 0 1  
1 1 0 1 1 U 

  A   
 

DB = UA' + UB + A'B 
 
In your lab notebook, draw the state diagram and the state table. Then verify the above K-maps and the D 
flip-flop input equations for the saturating up/down counter.  Next, draw the circuit diagram including two 
D flip-flops (7474) and the logic circuits for DA and DB.  Do not forget to include the clock input. 
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11.2  In this section, you will design (but not build) a sequential circuit, or state-machine, using two D-
flip-flops (7474) and some gates. This will be a "Mealy" machine; i.e. a synchronous circuit whose output 
is a function of both present state and inputs. The circuit will consist of external input X, an output Y, and 
two state-variable D-flip-flops A and B. The state diagram is shown below with X/Y values along the 
arrows. Because this is a Mealy machine, the output Y is determined by input X as well as by the present 
state AB.  
 

For example: alongside the arrow from state-0 to state-1, we see X/Y = 0/1. This means that with X = 0, 
there will be a transition to state-1 when the clock pulse comes. It also means that until the clock pulse 
comes and while the circuit is still in state-0, the output Y will be 1 as long as X = 0.  
 
 
 
 
 
 
                                                                             
 
 

 
 
 
 

 

From the above state diagram, finish the state table (on your own paper). Notice in the table that each pair 
of rows represents the same state of AB (i.e. the same circle in the diagram). 
 

Next, design (but don't build) the circuit. Do this with just three chips: one 7474 and 2 NAND chips. (If 
you need to complement A and/or B, just use inverted flip-flop outputs--there's no need to use gates as 
inverters. But you will need a gate to produce X' .) 
 

For this experiment (as well as 11.3)  

1. From the state table, derive maps for DA, DB and Y (labeled as shown). 

2. From the maps, derive their equations.  

3. Draw the circuits using NANDs only (7400's and/or 7410's, but no 7408's or 7432's). Use 
DeMorgan symbols for NANDs but only where doing so preserves the original AND/OR structure. 
A diagram with only normal or with only DM symbols is not acceptable. (Remember: connecting 
wires must either have bubbles at both ends, or no bubbles at all.) Also, use the text function to 
label circuit inputs A or A', B or B', X or X' and outputs DA, DB, Y. 

------------------------------------------------------------------------------------------------------------------------------- 

State Diagram for Mealy Machine 
 

p.s. input output n.s. 
A B X Y A B 
0 0 0 1 0 1 
0 0 1 0 0 0 
0 1 0 0 1 0 
0 1 1    
1 0 0    
1 0 1    
1 1 0    
1 1 1    

 
Partially Completed State Table 
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11.3*  This section is similar to 11.2 except that the sequential circuit here is a "Moore" machine--a state 
machine whose output depends only on present state, not on inputs. The circuit has two D-flip-flops, A, B, 
an input X (from a switch) and an output Y (connected to an LED). Its state diagram is on the next page.                             
 

You can think of this circuit as a primitive entry-code detector. You enter a sequence of values for input X 
and move the circuit from state to state. (This would be like pressing a sequence of keys in a special order 
to gain entry to a room, a car, or whatever.) 
 

Here, each step involves setting input X to 0 or 1 (using a switch) and then pressing a pulser. You do this at 
least 3 times. If you set X to the right value each time, the state machine reaches state 3 (AB =11). At this 
time, Y goes high and turns on its LED, indicating that you've gained entry. If at any point, you clock in a 
wrong value for X, the state machine returns to 0 where you have to try a new sequence for X. 
 

Of course, with a real entry-code detector, if you didn't know the code there would be too many possible 
sequences to try--here there are only 8. Also, unlike here, just pressing a key enters it; you don't have to 
clock it in with a pulser. 
 

In the state diagram, you see a sequence of values for X alongside the arrows ( i.e. X1, X2, X3). You will 
have to choose these values. This will be the sequence required to get you to state 3. If the complement of 
any required X is entered, the circuit returns to AB = 00 and waits for a new sequence to begin. Notice that 
once in state 3, the next state is 00, regardless of X3's value. 
 

In a Moore machine, output Y is not dependent on X as it was in the Mealy machine; it depends only on the 
present state of the circuit (AB). This is why it is placed under the state number inside the state circle, not 
alongside the arrows. So, in states 0, 1, and 2, Y = 0, indicating that the required sequence of X's is not yet 
complete. When it is, Y = 1, which turns on an LED to signal that the key code was successfully entered.  
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State Diagram for Moore Machine 
 

X1' 



                                                                                                                                             Exp.11 (pg.7) 
 
Design steps: 

1. Choose a sequence of values for X. Make X2 the same as X0 (0,0 or 1,1) and make X1 the opposite. 
Example: X0 = 0, X2 = 0, so X1 = 1 or the opposite. (This may simplify the circuit you will build.) 

2. Derive the state table from the above diagram. The table has the same format as that in 11.2. 

3. From the table, draw K-maps for DA, DB, and Y, and from the maps, derive equations in their 
simplest form.  

4. Draw the circuit. Only three chips are needed: a 7474 (dual D-flip-flops), a 7410, and a 7402. Do 
not use a 7400. Remember: a 7410 NAND gate can also be drawn as an invert-OR and a 7402 NOR 
gate can also be drawn as an invert-AND. Use DeMorgan symbols where appropriate.  
Inverters are not needed for A' and B' since they are available as flip-flop outputs. 

5. Build the circuit. Bring state variables A and B as well as Y to LEDs so you can monitor the 
sequence of states and the output. 

 

Start by momentarily grounding the clear inputs of both flip-flops to put the circuit into state 0. Then, 

• Set X to X0' and clock the circuit with a pulser. The state should remain at 00. 
• Repeat with X = X0. The state should move to 01. 

Repeat this test method, moving to the next state by entering the correct subsequence to get there. Then 
enter X' for that state and return to 00. Continue until you've checked all the states. (Of course, from state 3 
you can only go back to 00--there is no correct or incorrect value for X.) 
 

Have your instructor check your results. 


