Strong Edge-Coloring for Cubic Halin Graphs

Gerard Jennhwa Chang^{123*} and Daphne Der-Fen Liu^{4†}

 $^{1}\mathrm{Department}$ of Mathematics, National Taiwan University, Taipei 10617, Taiwan

 $^2\mathrm{Taida}$ Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

³National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan

⁴Department of Mathematics, California State University, Los Angeles, USA

November 4, 2011 (revision January 11, 2012)

Abstract

A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the *strong chromatic index* of G. Lih and Liu [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open problem to determine which of such graphs have strong chromatic index 6. Our article is devoted to this open problem. In particular, we disprove a conjecture of Shiu, Lam and Tam [18] that the strong chromatic index of a cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6.

1 Introduction

The coloring problem considered in this article has restrictions on edges within distance two apart. The *distance* between two edges e and e' in a graph is the minimum

^{*}E-mail: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC98-2115-M-002-013-MY3.

[†]Corresponding author. Email: dliu@calstatela.edu.

k for which there is a sequence e_0, e_1, \ldots, e_k of distinct edges such that $e = e_0$, $e' = e_k$, and e_{i-1} shares an end vertex with e_i for $1 \le i \le k$. A strong edge-coloring of a graph is a function that assigns to each edge a color such that any two edges within distance two apart must receive different colors. A strong k-edge-coloring is a strong edge-coloring using at most k colors. The strong chromatic index of a graph G, denoted by $\chi'_s(G)$, is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [8, 9] for cubic planar graphs. A trivial upper bound is that $\chi'_s(G) \leq 2\Delta^2 - 2\Delta + 1$ for any graph G of maximum degree Δ . Fouquet and Jolivet [8] established a Brooks type upper bound $\chi'_s(G) \leq 2\Delta^2 - 2\Delta$, which is not true only for $G = C_5$ as pointed out by Shiu and Tam [19]. The following conjecture was posed by Erdős and Nešetřil [5, 6] and revised by Faudree, Schelp, Gyárfás and Tuza [7]:

Conjecture 1. For any graph G of maximum degree Δ ,

$$\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2}, & \text{if } \Delta \text{ is even};\\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{if } \Delta \text{ is odd}. \end{cases}$$

Faudree, Schelp, Gyárfás and Tuza [7] also asked whether $\chi'_s(G) \leq 9$ if G is cubic planar. If this upper bound is proved to be true, it would be the best possible. For graphs with maximum degree $\Delta = 3$, Conjecture 1 was verified by Andersen [1] and by Horák, Qing and Trotter [12] independently. For $\Delta = 4$, while Conjecture 1 says that $\chi'_s(G) \leq 20$, Horák [11] obtained $\chi'_s(G) \leq 23$ and Cranston [4] proved $\chi'_s(G) \leq 22$.

The main theme of this paper is to study strong edge-coloring for the following planar graphs. A Halin graph $G = T \cup C$ is a plane graph consisting of a plane embedding of a tree T each of whose interior vertex has degree at least 3, and a cycle C connecting the leaves (vertices of degree 1) of T such that C is the boundary of the exterior face. The tree T and the cycle C are called the *characteristic tree* and the *adjoint cycle* of G, respectively. Strong chromatic index for Halin graphs was first considered by Shiu, Lam and Tam [18] and then studied in [19, 13, 14].

A caterpillar is a tree whose removal of leaves results in a path called the *spine* of the caterpillar. For $k \geq 1$, let \mathcal{G}_k be the set of all cubic Halin graphs whose characteristic trees are caterpillars with k + 2 leaves. For a graph $G = T \cup C$ in \mathcal{G}_k , let $P: v_1, v_2, \ldots, v_k$ be the spine of T and each v_i is adjacent to a leaf u_i for $1 \leq i \leq k$ with v_1 (resp. v_k) adjacent to one more leaf $u_0 = v_0$ (resp. $u_{k+1} = v_{k+1}$). We draw G on the plane by putting the path $v_0 P v_{k+1}$ horizontally in the middle, and the pending

edges (leaf edges) $v_i u_i$, $1 \le i \le k$, by either up or down edges vertically to P. See Figure 1 for an example of \mathcal{G}_8 .

Figure 1: The graph $G_{2,3,3}$ in \mathcal{G}_8 .

From this drawing, we associate G with a list of positive integers (n_1, n_2, \ldots, n_r) , where n_i is the number of maximum consecutive up or down edges, starting from the leftmost to the rightmost on P. We use G_{n_1,n_2,\ldots,n_r} to denote this graph. For instance the graph in Figure 1 is $G_{2,3,3}$. Notice that $n_1 + n_2 + \cdots + n_r = k$. For a special case when these pending edges are all in the same direction (up or down), the graph G_k is called the *necklace* and denoted by Ne_k in [18]. Notice that G_k is the only graph in \mathcal{G}_k for $k \leq 3$.

Observation 1. $G_{n_1,n_2,\ldots,n_r} \cong G_{n_r,\ldots,n_2,n_1}$.

Observation 2. $G_{n_1,n_2,...,n_r,1} \cong G_{n_1,n_2,...,n_r+1}$.

It is easy to see that $\chi'_s(G) \ge 6$ for any $G \in \mathcal{G}_k$, $k \ge 1$. Shiu, Lam and Tam [18] obtained the following results:

$$\chi'_{s}(G_{k}) = \begin{cases} 9, & k = 2; \\ 8, & k = 4; \\ 7, & k \text{ is even and } k \ge 6; \\ 6, & k \text{ is odd.} \end{cases}$$

- If $G \in \mathcal{G}_k$ with $k \ge 4$, then $6 \le \chi'_s(G) \le 8$.
- If G is a cubic Halin graph, then $6 \le \chi'_s(G) \le 9$.

Moreover, the authors [18] raised the following conjectures:

Conjecture 2. If $G \in \mathcal{G}_k$ with $k \ge 5$, then $\chi'_s(G) \le 7$.

Conjecture 3. If $G \in \mathcal{G}_k$ with odd $k \ge 5$, then $\chi'_s(G) = 6$.

Conjecture 4. If $G = T \cup C$ is a Halin graph, then $\chi'_s(G) \leq \chi'_s(T) + 4$.

Faudree, Schelp, Gyárfás and Tuza [7] proved, for any tree T, it holds that $\chi'_s(T) = \max_{uv \in E(T)} (\deg(u) + \deg(v) - 1)$. Conjecture 4 was confirmed by Lai, Lih and Tsai [13], who proved a stronger result that $\chi'_s(G) \leq \chi'_s(T) + 3$ for any Halin graph $G = T \cup C$ other than G_2 and wheels W_n with $n \neq 0 \pmod{3}$, where $W_n = K_{1,n} \cup C_n$. Note that $\chi'_s(W_5) = \chi'_s(K_{1,5}) + 5$; and $\chi'_s(G) = \chi'_s(T) + 4$ for $G = G_2$ or $G = W_n$ with $n \neq 0 \pmod{3}$ and $n \neq 5$.

Conjecture 2 was confirmed by Lih and Liu [14], who proved a more general result that $\chi'_s(G) \leq 7$ is true for any cubic Halin graph other than G_2 and G_4 . Hence, the strong chromatic index for any cubic Halin graph $G \neq G_2, G_4$ is either 6 or 7.

It remains open to determine the cubic Halin graphs G with $\chi'_s(G) = 6$ (or the ones with $\chi'_s(G) = 7$). Our aim is to investigate this problem. In particular, we establish methods that can be used to study the graphs \mathcal{G}_k . As a result, we discover counterexamples to Conjecture 3. We prove that for any $k \geq 7$, there exists graph $G \in \mathcal{G}_k$ with $\chi'_s(G) = 7$; and for any $k \neq 2, 4$, there exists $G \in \mathcal{G}_k$ (other than necklaces) with $\chi'_s(G) = 6$. In Section 4, we determine the value of $\chi'_s(G)$ for some special families of graphs G in \mathcal{G}_k .

2 Cubic Halin graphs G with $\chi'_s(G) = 6$

This section gives some cubic Halin graphs with strong chromatic index 6. We begin with the development of several general transformation theorems for Halin graphs.

For a positive integer r, an r-tail of a tree T is a path $P_r: v_1, v_2, \ldots, v_r, v_{r+1}$ in which v_1 is not a leaf but all vertices in $L_i = \{u \notin P: uv_i \in E(T)\}$ are leaves for $1 \leq i \leq r$. For integer s < r, cutting P_s from T means deleting the vertices $\{v_1, v_2, \ldots, v_{s-1}\} \cup_{1 \leq i \leq s} L_i$ from T, which results in a tree denoted by $T \ominus P_s$. Notice that v_s becomes a leaf adjacent to v_{s+1} in $T \ominus P_s$.

Suppose $P: v_1, v_2, \ldots, v_r, v_{r+1}$ is an r-tail of the characteristic tree T of a Halin graph $G = T \cup C$. For any j with $1 \leq j \leq r$, the vertices in $\bigcup_{1 \leq i \leq j} L_i$ form a consecutive portion on the adjoint cycle C. See Figure 2 for an example of a 4-tail. For any two vertices in $\bigcup_{2 \leq i \leq r} L_i$, we may regard that they are on the same or different sides of L_1 . For instance, in Figure 2, u_3^1 and u_3^2 are on the same side of L_1 , while u_2^1 and u_2^2 are on different sides of L_1 . For s < r, the tree $T \ominus P_s$ is the characteristic tree of a new Halin graph, denoted by $G \ominus P_s$, whose adjoint cycle is obtained from C by replacing the segment $\{x\} \cup_{1 \le i \le s} L_i \cup \{y\}$ by the path xv_sy originally not in G, where x (respectively, y) is the vertex in C right before (respectively, after) $\cup_{1 \le i \le s} L_i$. See the dashed path for xv_3y in Figure 2.

Figure 2: A cutting 4-tail from T, resulting in $G \ominus P_4$ with two new edges, v_3x and v_3y , while vertices in $\{v_1, v_2\} \cup L_1 \cup L_2 \cup L_3$ are all gone.

We denote a 4-cycle by (x_1, x_2, x_3, x_4) , which consists of the edges x_4x_1 , and x_ix_{i+1} for i = 1, 2, 3.

Lemma 3. Suppose (x_1, x_2, x_3, x_4) is a 4-cycle in a graph G in which each x_i is adjacent to a vertex y_i not in the 4-cycle for $1 \le i \le 4$. If $\chi'_s(G) = 6$, then for every strong 6-edge-coloring f of G we have

- (i) $f(x_1y_1) = f(x_3y_3)$ and $f(x_2y_2) = f(x_4y_4)$, and
- (ii) $f(y_3y_4) = f(x_1x_2)$ whenever y_3 is adjacent to y_4 .

Proof. Part (i) follows from that for each *i* the edges on the 4-cycle (x_1, x_2, x_3, x_4) together with the edges $x_i y_i$ and $x_{i+1} y_{i+1}$ use all the 6 colors, where $x_5 y_5 = x_1 y_1$.

Part (ii) follows from that the edges on the 4-cycle (x_3, y_3, y_4, x_4) together with the two edges x_1x_4 , x_2x_3 use all the 6 colors. See Figure 3 for an illustration.

We now consider the cutting tail operation for the characteristic tree of a cubic Halin graph $G = T \cup C$. We shall study the conditions for which such an operation preserves the fact that $\chi'_s(G) = 6$.

Figure 3: a, b, c are forced to be 2, 1, 3, respectively.

Theorem 4. Suppose $P: v_1, v_2, v_3, v_4$ is a 4-tail of the characteristic tree T of a cubic Halin graph $G = T \cup C$, where $L_1 = \{u_0, u_1\}$ and $L_i = \{u_i\}$ for $i \ge 2$. If u_2 and u_3 are on the same side of L_1 , then $\chi'_s(G) = 6$ if and only if $\chi'_s(G \ominus P_2) = 6$.

Proof. (\Rightarrow) Suppose $\chi'_s(G) = 6$. Let f be a strong 6-edge-coloring of G. Without loss of generality, we may assume that $f(xu_0) = 1$, $f(u_0u_1) = 2$, $f(u_1u_2) = 3$, $f(v_1u_0) = 4$, $f(v_1u_1) = 5$, and $f(v_1v_2) = 6$ as the bold faced numbers in Figure 4. It is then the case that $f(v_2u_2) = 1$. Repeatedly applying Lemma 3, we have $f(u_2u_3) = 4$, $f(v_2v_3) = 2$, $f(v_3u_3) = 5$, $f(u_3z) = 6$ and $f(v_3v_4) = 3$ (see Figure 4). In $G \ominus P_2$, we use the old color for edges in G, and color the new edges xv_2 and v_2y by 1 and 4, respectively. It is easy to check that the new coloring is a strong 6-edge-coloring for $G \ominus P_2$. Hence, $\chi'_s(G \ominus P_2) = 6$.

(\Leftarrow) Suppose $\chi'_s(G \ominus P_2) = 6$. Let f' be a strong 6-edge-coloring of $G \ominus P_2$. Without loss of generality, assume that the colors are as in Figure 4. We may delete the edges xv_2 and v_2y , and extend the coloring to G using the colors as in Figure 4. This gives a strong 6-edge-coloring of G, so $\chi'_s(G) = 6$.

Figure 4: A cutting $G \ominus P_2$.

Corollary 5. Suppose $n_1 + n_2 + \cdots + n_r \ge 2$. Then $\chi'_s(G_{n_1,n_2,\dots,n_r}) = 6$ if and only if $\chi'_s(G_{n_1,n_2,\dots,n_r+2}) = 6$.

Theorem 6. Suppose $P: v_1, v_2, v_3, v_4, v_5$ is a 5-tail of the characteristic tree T of a cubic Halin graph $G = T \cup C$, where $L_1 = \{u_0, u_1\}$ and $L_i = \{u_i\}$ for $i \ge 2$. Assume u_2 and u_3 are on different sides of L_1 , while u_2 and u_4 are on the same side of L_1 . If $\chi'_s(G \ominus P_2) = 6$, then $\chi'_s(G) = 6$.

Proof. Let f' be a strong 6-edge-coloring of $G \oplus P_2$. By Lemma 3, without loss of generality, we may assume that $f'(v_3v_4) = 1$, $f'(v_2v_3) = 2$, $f'(v_2y) = 3$, $f'(v_4u_4) = f'(wx) = 4$, $f'(v_4v_5) = f'(xv_2) = 5$ and $f'(v_3u_3) = f'(u_4z) = 6$, as the bold faced numbers shown in Figure 5. We delete the edges xv_2 and v_2y from $G \oplus P_2$, and extend the coloring to G using the colors shown in Figure 5. This gives a strong 6-edge-coloring of G, so $\chi'_s(G) = 6$.

Figure 5: A cutting $G \ominus P_2$.

Remark that unlike Theorem 4 the converse of Theorem 6 is not true. This can be seen by the example given blow that $\chi'_s(G_{1\star 8}) = \chi'_s(G_{1\star 6,2}) = 6$, while $\chi'_s(G_{1\star 6}) = 7$. (See Corollary 11.)

Corollary 7. If $n_1 + n_2 + \cdots + n_r \ge 2$ and $\chi'_s(G_{n_1, n_2, \dots, n_r, 1}) = 6$, then $\chi'_s(G_{n_1, n_2, \dots, n_r, 1, 2}) = 6$.

Corollary 8. Assume $\chi'_s(G_{n_1,n_2,\dots,n_{r-1},1}) = 6$ where $n_1 + n_2 + \dots + n_{r-1} \ge 2$. Then $\chi'_s(G_{n_1,n_2,\dots,n_{r-1},F_1,F_2,\dots,F_k,1}) = 6$, where each F_i is either a single positive even integer, or a list of two integers, (1,t), for some odd integer t. In particular, $\chi'_s(G_{n_1,n_2,\dots,n_{r-1},1\star m}) = 6$ for odd m, where $1 \star m$ stands for a sequence of m 1's.

Proof. Assume $\chi'_s(G_{n_1,n_2,\ldots,n_{r-1},1}) = 6$. It suffices to prove the result for the case k = 1. Assume F_1 is a single even integer, $F_1 = n_r$. By Corollary 5 and Observation 2,

$$6 = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, 1}) = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, 1+n_r}) = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, n_r, 1}).$$

Next, assume F_1 is a list of two integers (1, t) for some odd t = 2s + 1. By Corollaries 7 and 5, and Observation 2,

$$6 = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, 1, 2}) = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, 1, 2(s+1)}) = \chi'_s(G_{n_1, n_2, \dots, n_{r-1}, 1, t, 1}).$$

Let k be an even integer. Although it is known [18] that $\chi'_s(G_k) > 6$, there exist graphs $G \in \mathcal{G}_k$ with $\chi'_s(G) = 6$. Figures 6 and 7 show two examples. For positive integers x and n, we denote $x \star n$ as an n-term repeated sequence of x.

Figure 6: A strong 6-edge-coloring for $G_{2,2,2} = G_{2,2,1,1}$.

Figure 7: A strong 6-edge-coloring for $G_{1\star8}$.

By the results we have shown, one can verify that for every positive integer $k \neq 2, 4$, there exists $G \in \mathcal{G}_k$ (other than necklaces) with $\chi'_s(G) = 6$. This is because $\chi'_s(G_1) = \chi'_s(G_{1,1,1}) = \chi'_s(G_{2,2,1,1}) = \chi'_s(G_{1\star 8}) = 6$, by Corollary 8, one gets $\chi'_s(G_{2,2,1\star m}) = 6$ for even $m \geq 4$, and $\chi'_s(G_{1\star n}) = 6$ for $n \neq 2, 4, 6$.

3 Cubic Halin graphs G with $\chi'_s(G) = 7$

We present some cubic Halin graphs with strong chromatic index 7. In particular, we prove that for any $k \geq 7$, there exists $G \in \mathcal{G}_k$ with $\chi'_s(G) = 7$.

Let us start with an example, $\chi'_s(G_{2,2}) = 7$. Suppose to the contrary that $\chi'_s(G_{2,2}) = 6$. Choose a strong 6-edge-coloring f for $G_{2,2}$. By Lemma 3 (i), $f(v_0u_3) = f(v_4v_5)$. Since the color $f(v_0u_3)$ has to be used by the 4-cycle (u_1, u_2, v_2, v_1) , it is the case that $f(v_0u_3) = f(u_2v_2)$, and so $f(v_4v_5) = f(u_2v_2)$, a contradiction.

Lemma 9. Let $G = G_{2,3,1,n_4,n_5...,n_r}$ with $r \ge 4$. If f is a strong 6-edge-coloring for G, then $f(u_1v_1) = f(u_6u_{7+n_4}) = f(v_7v_8)$.

Proof. Without loss of generality, assume that $f(v_0u_1) = 1$, $f(v_0v_1) = 2$, $f(v_0u_3) = 3$, $f(v_1u_1) = 4$, $f(u_1u_2) = 5$, and $f(v_1v_2) = 6$. See the bold faced numbers in Figure 8. Then $f(v_2u_2) = 3$. By Lemma 3 (i), $f(u_2u_6) = 2$, $f(v_2v_3) = f(u_4u_5) = 1$, and $f(v_4v_5) = 3$. See the italic numbers in Figure 8.

Suppose $f(v_3u_3) = x$ and $f(u_3u_4) = y$. Then $x \in \{4, 5\}$ and $y \in \{4, 5, 6\}$. By Lemma 3, $f(v_5u_5) = x$ and $f(v_5v_6) = y$. Let z be the only label in $\{4, 5, 6\} - \{x, y\}$. Then $\{f(v_6v_7), f(v_6u_6)\} = \{1, z\}$, since v_6v_7 and v_6u_6 cannot be labeled by 2, 3, x, y. Let $f(u_6u_{7+n_4}) = a$. Then $a \notin \{1, 2, 3, 5, y, z\}$. Hence, it must be the case that $a = x \neq 5$, implying a = x = 4.

By Lemma 3 (i), $f(u_5u_7) = f(v_3v_4) = c \in \{5, 2\}$. If c = 5, then $f(v_6v_7) = 1$ and $f(v_6u_6) = z = c = 5$, which is impossible as $f(u_1u_2) = 5$. Hence, c = 2. Then $f(v_7u_7) \notin \{1, 2, x, y, z\}$, so $f(v_7u_7) = 3$. Consequently, $f(v_7v_8) = b \notin \{1, 2, 3, y, z\}$. Therefore, b = x = 4. This completes the proof.

Figure 8: In $G_{2,3,1,n_4,n_5,\ldots,n_r}$, labels a and b are forced to be 4.

Theorem 10. The following graphs have strong chromatic index 7:

- (a) $G_{2,3,1,n_4}$.
- (b) $G_{2,3,1,1,n_5,n_6,\dots,n_r}$ with $r \ge 5$.
- (c) $G_{2,3,1,3,n_5}$.
- (d) $G_{2,3,1,3,2,n_6,n_7,\dots,n_r}$ with $r \ge 6$.
- (e) $G_{2,3,1,3,4,n_6}$.
- (f) $G_{2,3,1,3,4,2,n_7,n_8,\dots,n_r}$ with $r \ge 7$.

Proof. For each case in the following, we suppose to the contrary that the given graph has strong chromatic index 6. Let f be a strong 6-edge-coloring for G. We shall derive a contradiction for each case.

(a) By Corollary 5 we may assume that $n_4 \leq 2$. By Lemma 9, $f(u_6u_{7+n_4}) = f(v_7v_8)$, which contradicts the fact that the edges $u_6u_{7+n_4}$ and v_7v_8 are within distance two apart.

(b) Since $n_4 = 1$, by Lemma 9, $f(u_6u_8) = f(v_7v_8)$, which contradicts the fact that the edges u_6u_8 and v_7v_8 are distance two apart.

(c) By Corollary 5 we may assume that $n_5 \leq 2$. By Lemma 9 and Corollary 5, $f(u_6u_{10}) = f(v_7v_8) = f(u_9u_{10+n_5})$. For the case $n_5 = 1$, this is a contradiction as u_6u_{10} and u_9v_{11} are of distance two apart. For the case $n_5 = 2$, by Lemma 3 (i), $f(u_6u_{10}) = f(v_{11}v_{12})$, and so $f(v_{11}v_{12}) = f(u_9v_{12})$, a contradiction.

The proofs for (d), (e), and (f) are similar. We leave the details to the reader. \Box

An immediate consequence of Theorem 10 is that for every integer $k \ge 7$, there exists $G \in \mathcal{G}_k$ with $\chi'_s(G) = 7$. This gives infinite counter examples to Conjecture 3.

4 Special Families

We apply the results and methods established in the previous sections to completely determine the value of $\chi'_s(G)$ for several families of graphs G in \mathcal{G}_k .

Corollary 11. For $m \ge 1$, we have

$$\chi'_{s}(G_{1\star m}) = \begin{cases} 9, & m = 2; \\ 7, & m = 4, 6; \\ 6, & otherwise. \end{cases}$$

Proof. For m = 2, as $G_{1,1} = G_2$ and $\chi'_s(G_2) = 9$ [18], so the result holds. For m = 4, $G_{1\star 4} = G_{2,2}$ so $\chi'_s(G_{1\star 4}) = 7$.

Because $G_3 = G_{1\star 3}$ and $\chi'_s(G_3) = 6$, so $\chi'_s(G_{1\star 3}) = 6$. By Corollary 8 (letting $n_1 = n_2 = \cdots = n_{r-1} = 1$) and Figure 7 the result holds for m = 5 and $m \ge 7$.

It remains to show that $\chi'_s(G_{1\star 6}) > 6$. Assume to the contrary $\chi'_s(G_{1\star 6}) = 6$. As $G_{1\star 6} = G_{2,1,1,2}$, we may let f be a strong 6-edge-coloring for $G_{2,1,1,2}$. Without loss of generality, assume $f(v_0u_1) = 1$, $f(v_0v_1) = 2$, $f(v_0u_3) = 3$, $f(u_1u_2) = 4$, $f(v_1u_1) = 5$, and $f(v_1v_2) = 6$. Then $f(v_2u_2) = 3$, $f(v_2v_3) = 1$, and $f(u_2u_4) = 2$. These imply that $\{f(v_3v_4) = f(v_3u_3)\} = \{4,5\}$, so $f(v_4u_4) = f(v_0u_1) = 6$. By Lemma 3, it must be $f(v_6v_7) = 6$, which is a contradiction as v_6v_7 and v_4u_4 are distance two apart.

Corollary 12. For $m \ge 2$, we have

$$\chi'_s(G_{2\star m}) = \begin{cases} 7, & m = 2; \\ 6, & otherwise. \end{cases}$$

Proof. At the beginning of Section 3, we have learned that $\chi'_s(G_{2,2}) = 7$. Figure 6 shows a strong 6-edge coloring f for $G_{3\star 2}$. In the following we define a recursive strong 6-edge coloring for $G_{2\star m}$, $m \geq 3$.

Initially, let the coloring in Figure 6 be f_2 . Suppose we have a strong 6-edge coloring f_m for $G_{2\star m}$. Extend f_m to a strong 6-coloring f_{m+1} for $G_{2\star(m+1)}$ by:

$$\begin{split} f_{m+1}(ww') &= f_m(ww') \text{ if } ww' \in E(G_{2\star m});\\ f_{m+1}(v_{2m+1}v_{2m+2}) &= f_m(u_{2m-1}u_{2m});\\ f_{m+1}(u_{2m-2}u_{2m+1}) &= f_{m+1}(v_{2m+2}v_{2m+3}) = f_m(v_{2m+1}u_{2m-2});\\ f_{m+1}(u_{2m}u_{2m+3}) &= f_{m+1}(v_{2m+1}u_{2m+1}) = f_m(v_{2m+1}u_{2m});\\ f_{m+1}(v_{2m+2}u_{2m+2}) &= f_m(v_{2m-1}v_{2m});\\ f_{m+1}(u_{2m+1}u_{2m+2}) &= f_m(v_{2m}u_{2m}); \text{ and }\\ f_{m+1}(v_{2m+3}u_{2m+2}) &= f_m(v_{2m}v_{2m+1}). \end{split}$$

It is easy to check that the above is a strong 6-edge coloring for $G_{2\star(m+1)}$. We shall leave the details to the reader.

Corollary 13. For $m \ge 1$, we have

$$\chi'_s(G_{3\star m}) = \begin{cases} 7, & m = 2, 4, 6; \\ 6, & otherwise. \end{cases}$$

Proof. We first consider $m \neq 2, 4, 5$. Since $\chi'_s(G_3) = \chi'_s(G_5) = 6$, by Observations 1 and 2 we have $\chi'_s(G_{1,3,1}) = 6$. By Corollary 5, we get $\chi'_s(G_{3,3,3}) = 6$. Hence, the result holds for m = 1, 3.

Assume $m \ge 6$. If $\chi'_s(G_{2,3\star(m-4),2}) = 6$, then by Corollary 5, $\chi'_s(G_{4,3\star(m-4),4}) = \chi'_s(G_{1,3\star(m-2),1}) = \chi'_s(G_{3\star m}) = 6$. Hence, it is enough to find a strong 6-edge-coloring f for $G_{2,3\star(m-4),2}$.

In the following we let $f(v_0u_1) = 1$, $f(v_0v_1) = 2$, $f(v_0u_3) = 3$, $f(u_1u_2) = 4$, $f(v_1u_1) = 5$, and $f(v_1v_2) = 6$. Consequently, by Lemma 3, $f(v_2v_3) = f(u_4u_5) = 1$, $f(u_2u_6) = f(v_7v_8) = 2$, and $f(u_2v_2) = f(v_4v_5) = 3$. Since $f(v_5v_6)$, $f(u_2u_6) \neq 4$, so the color 3 has to be used in the 4-cycle $(u_6u_7v_7v_6)$, it must be the case that $f(v_7u_7) = 3$.

Assume *m* is even. Let m - 4 = 2k. Define $f(v_4u_4) = 4$, $f(u_3u_4) = 6$, and the remaining by the following recursive process for $1 \le t \le 2k$:

$$f(v_{3t}v_{3t+1}) = \begin{cases} f(v_{3t-2}u_{3t-2}) & \text{if } t \text{ is even;} \\ f(v_{3t}u_{3t-3}v_{3t-2}) & \text{if } t \text{ is odd.} \end{cases}$$

$$f(v_{3t}u_{3t}) = \begin{cases} f(u_{3t-2}u_{3t-1}) & \text{if } t \text{ is even;} \\ f(v_{3t-2}u_{3t-2}) & \text{if } t \text{ is odd.} \end{cases}$$

$$f(u_{3t}u_{3t+1}) = \begin{cases} f(v_{3t-1}u_{3t-1}) & \text{if } t \text{ is even;} \\ f(u_{3t-2}u_{3t-1}) & \text{if } t \text{ is odd,} \end{cases}$$

$$f(v_{3t+1}u_{3t+1}) = \begin{cases} f(v_{3t-2}v_{3t-1}) & \text{if } t \text{ is even;} \\ f(v_{3t-1}u_{3t-1}) & \text{if } t \text{ is even;} \\ f(v_{3t-1}u_{3t-1}) & \text{if } t \text{ is odd, } t \ge 3 \end{cases}$$

By Lemma 3, the colors for the remaining edges are fixed. It is not hard to see that f is a strong 6-edge-coloring for $G_{2,3\star(2k),2}$. See Figure 9 for an example.

Assume m is odd. Let m-4 = 2k+1. Let $f(v_3v_4) = 4$, $f(v_3u_3) = 5$, $f(u_3u_4) = 6$, and $f(u_4v_4) = 2$. For $2 \le t \le 2k$, define f by the following recursive process:

Figure 9: A strong 6-edge-coloring for $G_{2,3,3,2}$.

$$f(v_{3t}v_{3t+1}) = \begin{cases} f(v_{3t-3}v_{3t-2}) & \text{if } t \text{ is even;} \\ f(u_{3t-2}u_{3t-1}) & \text{if } t \text{ is odd.} \end{cases}$$

$$f(v_{3t}u_{3t}) = \begin{cases} f(u_{3t-2}u_{3t-1}) & \text{if } t \text{ is even;} \\ f(v_{3t-2}u_{3t-2}) & \text{if } t \text{ is odd.} \end{cases}$$

$$f(u_{3t}u_{3t+1}) = \begin{cases} f(v_{3t-1}u_{3t-1}) & \text{if } t \text{ is even;} \\ f(v_{3t-2}v_{3t-1}) & \text{if } t \text{ is odd.} \end{cases}$$

$$f(v_{3t+1}u_{3t+1}) = \begin{cases} f(u_{3t-2}v_{3t-2}) & \text{if } t \text{ is even;} \\ f(u_{3t-1}v_{3t-1}) & \text{if } t \text{ is even;} \\ f(u_{3t-1}v_{3t-1}) & \text{if } t \text{ is odd.} \end{cases}$$

Note, for t = 2 in the last case above, $f(v_7u_7) = 3$ is fixed as discussed at the beginning of the proof.

For t = 2k + 1, let $f(v_{6k+3}v_{6k+4}) = f(u_{6k+1}v_{6k+1}), f(v_{6k+3}u_{6k+3}) = f(u_{6k+1}u_{6k+2}), f(u_{6k+3}u_{6k+4}) = f(v_{6k+1}v_{6k+2}), and f(v_{6k+4}u_{6k+4}) = f(u_{6k+2}v_{6k+2}).$

Again, by Lemma 3, the colors for the remaining edges are fixed. It is not hard to see that f is a strong 6-edge-coloring for $G_{2,3\star(2k+1),2}$. See Figure 10 for an example.

Figure 10: A strong 6-edge-coloring for $G_{2,3,3,3,2}$.

Now consider m = 2. Because $\chi'_s(G_{3,1}) = \chi'_s(G_4) > 6$, Corollary 5 implies that $\chi'_s(G_{3,3}) > 6$, so $\chi'_s(G_{3,3}) = 7$.

For m = 4, since $\chi'_s(G_{2,2}) > 6$, by Corollary 5, we get $\chi'_s(G_{4,4}) = \chi'_s(G_{1,3,3,1}) > 6$. Use Corollary 5 twice again, we obtain $\chi'_s(G_{3,3,3,3}) > 6$, so $\chi'_s(G_{3,3,3,3}) = 7$.

For m = 5, by Theorem 10 (a), $\chi'_s(G_{2,3,1,1}) = \chi'_s(G_{2,3,2}) = 7$. This implies, by Corollary 5, $\chi'_s(G_{4,3,4}) = \chi'_s(G_{1,3,3,3,1}) = \chi'_s(G_{3\star 5}) = 7$.

Acknowledgments. The authors thank the referees for their prompt reports with many constructive suggestions.

References

- L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231 – 252.
- [2] R. A. Brualdi and J. Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51 – 58.
- [3] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97 102.
- [4] D. Cranston, Strong edge-coloring graphs with maximum degree 4 using 22 colors, Discrete Math. 306 (2006) 2772 2778.
- [5] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81 – 92.
- [6] P. Erdős and J. Nešetřil, [Problem], in: G. Halász and V. T. Sós (eds.), Irregularities of Partitions, Springer, Berlin, 1989, 162 –163.
- [7] R. J. Faudree, R. H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205 – 211.
- [8] J. L. Fouquet and J. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141 – 150.
- [9] J. L. Fouquet and J. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory (Waterloo 1982), 1984, 247 – 264.
- [10] M. C. Golumbic and M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157 – 165.

- [11] P. Horák, The strong chromatic index of graphs with maximum degree four, Contemp. Methods Graph Theory, 1990, 399 – 403.
- [12] P. Horák, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151 – 160.
- [13] H.-H. Lai, K.-W. Lih and P.-Y. Tsai, The strong chromatic index of Halin graphs, Discrete Math. (2011), doi:10.1016/j.disc.2011.09.016.
- [14] K.-W. Lih and D. D.-F. Liu, On the strong chromatic index of cubic Halin graphs, Appl. Math. Lett. (2011), doi:10.1016/j.aml.2011.10.046.
- [15] M. Mahdian, On the computational complexity of strong edge coloring, Discrete Appl. Math. 118 (2002) 239 – 248.
- [16] M. Maydanskiy, The incidence coloring cofor graphs of maximum degree 3, Discrete Math. 292 (2005) 131 – 141.
- [17] M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Appl. Math. 143 (2004) 285 – 291.
- [18] W. C. Shiu, P. C. B. Lam and W. K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211 – 222.
- [19] W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) 754 – 758.
- [20] J. Wu and W. Lin, The strong chromatic index of a class of graphs, Discrete Math. 308 (2008) 6254 – 6262.