Strong Edge-Coloring for Cubic Halin Graphs

Gerard Jennhwa Chang ${ }^{123 *}$ and Daphne Der-Fen Liu ${ }^{4 \dagger}$
${ }^{1}$ Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
${ }^{2}$ Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
${ }^{3}$ National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan
${ }^{4}$ Department of Mathematics, California State University, Los Angeles, USA

November 4, 2011 (revision January 11, 2012)

Abstract

A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open problem to determine which of such graphs have strong chromatic index 6. Our article is devoted to this open problem. In particular, we disprove a conjecture of Shiu, Lam and Tam [18] that the strong chromatic index of a cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6 .

1 Introduction

The coloring problem considered in this article has restrictions on edges within distance two apart. The distance between two edges e and e^{\prime} in a graph is the minimum

[^0]k for which there is a sequence $e_{0}, e_{1}, \ldots, e_{k}$ of distinct edges such that $e=e_{0}$, $e^{\prime}=e_{k}$, and e_{i-1} shares an end vertex with e_{i} for $1 \leq i \leq k$. A strong edge-coloring of a graph is a function that assigns to each edge a color such that any two edges within distance two apart must receive different colors. A strong k-edge-coloring is a strong edge-coloring using at most k colors. The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [8, 9] for cubic planar graphs. A trivial upper bound is that $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta+1$ for any graph G of maximum degree Δ. Fouquet and Jolivet [8] established a Brooks type upper bound $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta$, which is not true only for $G=C_{5}$ as pointed out by Shiu and Tam [19]. The following conjecture was posed by Erdős and Nešetřil [5, 6] and revised by Faudree, Schelp, Gyárfás and Tuza [7]:

Conjecture 1. For any graph G of maximum degree Δ,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { if } \Delta \text { is odd } .\end{cases}
$$

Faudree, Schelp, Gyárfás and Tuza [7] also asked whether $\chi_{s}^{\prime}(G) \leq 9$ if G is cubic planar. If this upper bound is proved to be true, it would be the best possible. For graphs with maximum degree $\Delta=3$, Conjecture 1 was verified by Andersen [1] and by Horák, Qing and Trotter [12] independently. For $\Delta=4$, while Conjecture 1 says that $\chi_{s}^{\prime}(G) \leq 20$, Horák [11] obtained $\chi_{s}^{\prime}(G) \leq 23$ and Cranston [4] proved $\chi_{s}^{\prime}(G) \leq 22$.

The main theme of this paper is to study strong edge-coloring for the following planar graphs. A Halin graph $G=T \cup C$ is a plane graph consisting of a plane embedding of a tree T each of whose interior vertex has degree at least 3 , and a cycle C connecting the leaves (vertices of degree 1) of T such that C is the boundary of the exterior face. The tree T and the cycle C are called the characteristic tree and the adjoint cycle of G, respectively. Strong chromatic index for Halin graphs was first considered by Shiu, Lam and Tam [18] and then studied in [19, 13, 14].

A caterpillar is a tree whose removal of leaves results in a path called the spine of the caterpillar. For $k \geq 1$, let \mathcal{G}_{k} be the set of all cubic Halin graphs whose characteristic trees are caterpillars with $k+2$ leaves. For a graph $G=T \cup C$ in \mathcal{G}_{k}, let $P: v_{1}, v_{2}, \ldots, v_{k}$ be the spine of T and each v_{i} is adjacent to a leaf u_{i} for $1 \leq i \leq k$ with v_{1} (resp. v_{k}) adjacent to one more leaf $u_{0}=v_{0}$ (resp. $u_{k+1}=v_{k+1}$). We draw G on the plane by putting the path $v_{0} P v_{k+1}$ horizontally in the middle, and the pending
edges (leaf edges) $v_{i} u_{i}, 1 \leq i \leq k$, by either up or down edges vertically to P. See Figure 1 for an example of \mathcal{G}_{8}.

Figure 1: The graph $G_{2,3,3}$ in \mathcal{G}_{8}.

From this drawing, we associate G with a list of positive integers $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$, where n_{i} is the number of maximum consecutive up or down edges, starting from the leftmost to the rightmost on P. We use $G_{n_{1}, n_{2}, \ldots, n_{r}}$ to denote this graph. For instance the graph in Figure 1 is $G_{2,3,3}$. Notice that $n_{1}+n_{2}+\cdots+n_{r}=k$. For a special case when these pending edges are all in the same direction (up or down), the graph G_{k} is called the necklace and denoted by $N e_{k}$ in [18]. Notice that G_{k} is the only graph in \mathcal{G}_{k} for $k \leq 3$.

Observation 1. $G_{n_{1}, n_{2}, \ldots, n_{r}} \cong G_{n_{r}, \ldots, n_{2}, n_{1}}$.
Observation 2. $G_{n_{1}, n_{2}, \ldots, n_{r}, 1} \cong G_{n_{1}, n_{2}, \ldots, n_{r}+1}$.
It is easy to see that $\chi_{s}^{\prime}(G) \geq 6$ for any $G \in \mathcal{G}_{k}, k \geq 1$. Shiu, Lam and Tam [18] obtained the following results:

$$
\chi_{s}^{\prime}\left(G_{k}\right)= \begin{cases}9, & k=2 \\ 8, & k=4 \\ 7, & k \text { is even and } k \geq 6 \\ 6, & k \text { is odd }\end{cases}
$$

- If $G \in \mathcal{G}_{k}$ with $k \geq 4$, then $6 \leq \chi_{s}^{\prime}(G) \leq 8$.
- If G is a cubic Halin graph, then $6 \leq \chi_{s}^{\prime}(G) \leq 9$.

Moreover, the authors [18] raised the following conjectures:
Conjecture 2. If $G \in \mathcal{G}_{k}$ with $k \geq 5$, then $\chi_{s}^{\prime}(G) \leq 7$.

Conjecture 3. If $G \in \mathcal{G}_{k}$ with odd $k \geq 5$, then $\chi_{s}^{\prime}(G)=6$.
Conjecture 4. If $G=T \cup C$ is a Halin graph, then $\chi_{s}^{\prime}(G) \leq \chi_{s}^{\prime}(T)+4$.
Faudree, Schelp, Gyárfás and Tuza [7] proved, for any tree T, it holds that $\chi_{s}^{\prime}(T)=$ $\max _{u v \in E(T)}(\operatorname{deg}(u)+\operatorname{deg}(v)-1)$. Conjecture 4 was confirmed by Lai, Lih and Tsai [13], who proved a stronger result that $\chi_{s}^{\prime}(G) \leq \chi_{s}^{\prime}(T)+3$ for any Halin graph $G=T \cup C$ other than G_{2} and wheels W_{n} with $n \not \equiv 0(\bmod 3)$, where $W_{n}=K_{1, n} \cup C_{n}$. Note that $\chi_{s}^{\prime}\left(W_{5}\right)=\chi_{s}^{\prime}\left(K_{1,5}\right)+5$; and $\chi_{s}^{\prime}(G)=\chi_{s}^{\prime}(T)+4$ for $G=G_{2}$ or $G=W_{n}$ with $n \not \equiv 0$ $(\bmod 3)$ and $n \neq 5$.

Conjecture 2 was confirmed by Lih and Liu [14], who proved a more general result that $\chi_{s}^{\prime}(G) \leq 7$ is true for any cubic Halin graph other than G_{2} and G_{4}. Hence, the strong chromatic index for any cubic Halin graph $G \neq G_{2}, G_{4}$ is either 6 or 7 .

It remains open to determine the cubic Halin graphs G with $\chi_{s}^{\prime}(G)=6$ (or the ones with $\chi_{s}^{\prime}(G)=7$). Our aim is to investigate this problem. In particular, we establish methods that can be used to study the graphs \mathcal{G}_{k}. As a result, we discover counterexamples to Conjecture 3. We prove that for any $k \geq 7$, there exists graph $G \in \mathcal{G}_{k}$ with $\chi_{s}^{\prime}(G)=7$; and for any $k \neq 2,4$, there exists $G \in \mathcal{G}_{k}$ (other than necklaces) with $\chi_{s}^{\prime}(G)=6$. In Section 4, we determine the value of $\chi_{s}^{\prime}(G)$ for some special families of graphs G in \mathcal{G}_{k}.

2 Cubic Halin graphs G with $\chi_{s}^{\prime}(G)=6$

This section gives some cubic Halin graphs with strong chromatic index 6. We begin with the development of several general transformation theorems for Halin graphs.

For a positive integer r, an r-tail of a tree T is a path $P_{r}: v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}$ in which v_{1} is not a leaf but all vertices in $L_{i}=\left\{u \notin P: u v_{i} \in E(T)\right\}$ are leaves for $1 \leq i \leq r$. For integer $s<r$, cutting P_{s} from T means deleting the vertices $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\} \cup_{1 \leq i \leq s} L_{i}$ from T, which results in a tree denoted by $T \ominus P_{s}$. Notice that v_{s} becomes a leaf adjacent to v_{s+1} in $T \ominus P_{s}$.

Suppose $P: v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}$ is an r-tail of the characteristic tree T of a Halin graph $G=T \cup C$. For any j with $1 \leq j \leq r$, the vertices in $\cup_{1 \leq i \leq j} L_{i}$ form a consecutive portion on the adjoint cycle C. See Figure 2 for an example of a 4 -tail. For any two vertices in $\cup_{2 \leq i \leq r} L_{i}$, we may regard that they are on the same or different sides of L_{1}. For instance, in Figure $2, u_{3}^{1}$ and u_{3}^{2} are on the same side of L_{1}, while u_{2}^{1}
and u_{2}^{2} are on different sides of L_{1}. For $s<r$, the tree $T \ominus P_{s}$ is the characteristic tree of a new Halin graph, denoted by $G \ominus P_{s}$, whose adjoint cycle is obtained from C by replacing the segment $\{x\} \cup_{1 \leq i \leq s} L_{i} \cup\{y\}$ by the path $x v_{s} y$ originally not in G, where x (respectively, y) is the vertex in C right before (respectively, after) $\cup_{1 \leq i \leq s} L_{i}$. See the dashed path for $x v_{3} y$ in Figure 2.

Figure 2: A cutting 4-tail from T, resulting in $G \ominus P_{4}$ with two new edges, $v_{3} x$ and $v_{3} y$, while vertices in $\left\{v_{1}, v_{2}\right\} \cup L_{1} \cup L_{2} \cup L_{3}$ are all gone.

We denote a 4-cycle by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, which consists of the edges $x_{4} x_{1}$, and $x_{i} x_{i+1}$ for $i=1,2,3$.

Lemma 3. Suppose $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a 4-cycle in a graph G in which each x_{i} is adjacent to a vertex y_{i} not in the 4 -cycle for $1 \leq i \leq 4$. If $\chi_{s}^{\prime}(G)=6$, then for every strong 6-edge-coloring f of G we have
(i) $f\left(x_{1} y_{1}\right)=f\left(x_{3} y_{3}\right)$ and $f\left(x_{2} y_{2}\right)=f\left(x_{4} y_{4}\right)$, and
(ii) $f\left(y_{3} y_{4}\right)=f\left(x_{1} x_{2}\right)$ whenever y_{3} is adjacent to y_{4}.

Proof. Part (i) follows from that for each i the edges on the 4 -cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ together with the edges $x_{i} y_{i}$ and $x_{i+1} y_{i+1}$ use all the 6 colors, where $x_{5} y_{5}=x_{1} y_{1}$.

Part (ii) follows from that the edges on the 4 -cycle $\left(x_{3}, y_{3}, y_{4}, x_{4}\right)$ together with the two edges $x_{1} x_{4}, x_{2} x_{3}$ use all the 6 colors. See Figure 3 for an illustration.

We now consider the cutting tail operation for the characteristic tree of a cubic Halin graph $G=T \cup C$. We shall study the conditions for which such an operation preserves the fact that $\chi_{s}^{\prime}(G)=6$.

Figure 3: a, b, c are forced to be $2,1,3$, respectively.

Theorem 4. Suppose $P: v_{1}, v_{2}, v_{3}, v_{4}$ is a 4-tail of the characteristic tree T of a cubic Halin graph $G=T \cup C$, where $L_{1}=\left\{u_{0}, u_{1}\right\}$ and $L_{i}=\left\{u_{i}\right\}$ for $i \geq 2$. If u_{2} and u_{3} are on the same side of L_{1}, then $\chi_{s}^{\prime}(G)=6$ if and only if $\chi_{s}^{\prime}\left(G \ominus P_{2}\right)=6$.

Proof. (\Rightarrow) Suppose $\chi_{s}^{\prime}(G)=6$. Let f be a strong 6 -edge-coloring of G. Without loss of generality, we may assume that $f\left(x u_{0}\right)=1, f\left(u_{0} u_{1}\right)=2, f\left(u_{1} u_{2}\right)=3, f\left(v_{1} u_{0}\right)=4$, $f\left(v_{1} u_{1}\right)=5$, and $f\left(v_{1} v_{2}\right)=6$ as the bold faced numbers in Figure 4. It is then the case that $f\left(v_{2} u_{2}\right)=1$. Repeatedly applying Lemma 3, we have $f\left(u_{2} u_{3}\right)=4, f\left(v_{2} v_{3}\right)=2$, $f\left(v_{3} u_{3}\right)=5, f\left(u_{3} z\right)=6$ and $f\left(v_{3} v_{4}\right)=3$ (see Figure 4). In $G \ominus P_{2}$, we use the old color for edges in G, and color the new edges $x v_{2}$ and $v_{2} y$ by 1 and 4 , respectively. It is easy to check that the new coloring is a strong 6-edge-coloring for $G \ominus P_{2}$. Hence, $\chi_{s}^{\prime}\left(G \ominus P_{2}\right)=6$.
(\Leftarrow) Suppose $\chi_{s}^{\prime}\left(G \ominus P_{2}\right)=6$. Let f^{\prime} be a strong 6-edge-coloring of $G \ominus P_{2}$. Without loss of generality, assume that the colors are as in Figure 4. We may delete the edges $x v_{2}$ and $v_{2} y$, and extend the coloring to G using the colors as in Figure 4. This gives a strong 6 -edge-coloring of G, so $\chi_{s}^{\prime}(G)=6$.

Figure 4: A cutting $G \ominus P_{2}$.

Corollary 5. Suppose $n_{1}+n_{2}+\cdots+n_{r} \geq 2$. Then $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r}}\right)=6$ if and only if $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r}+2}\right)=6$.

Theorem 6. Suppose $P: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ is a 5 -tail of the characteristic tree T of a cubic Halin graph $G=T \cup C$, where $L_{1}=\left\{u_{0}, u_{1}\right\}$ and $L_{i}=\left\{u_{i}\right\}$ for $i \geq 2$. Assume u_{2} and u_{3} are on different sides of L_{1}, while u_{2} and u_{4} are on the same side of L_{1}. If $\chi_{s}^{\prime}\left(G \ominus P_{2}\right)=6$, then $\chi_{s}^{\prime}(G)=6$.

Proof. Let f^{\prime} be a strong 6-edge-coloring of $G \ominus P_{2}$. By Lemma 3, without loss of generality, we may assume that $f^{\prime}\left(v_{3} v_{4}\right)=1, f^{\prime}\left(v_{2} v_{3}\right)=2, f^{\prime}\left(v_{2} y\right)=3, f^{\prime}\left(v_{4} u_{4}\right)=$ $f^{\prime}(w x)=4, f^{\prime}\left(v_{4} v_{5}\right)=f^{\prime}\left(x v_{2}\right)=5$ and $f^{\prime}\left(v_{3} u_{3}\right)=f^{\prime}\left(u_{4} z\right)=6$, as the bold faced numbers shown in Figure 5. We delete the edges $x v_{2}$ and $v_{2} y$ from $G \ominus P_{2}$, and extend the coloring to G using the colors shown in Figure 5. This gives a strong 6 -edge-coloring of G, so $\chi_{s}^{\prime}(G)=6$.

Figure 5: A cutting $G \ominus P_{2}$.
Remark that unlike Theorem 4 the converse of Theorem 6 is not true. This can be seen by the example given blow that $\chi_{s}^{\prime}\left(G_{1 \star 8}\right)=\chi_{s}^{\prime}\left(G_{1 \star 6,2}\right)=6$, while $\chi_{s}^{\prime}\left(G_{1 \star 6}\right)=7$. (See Corollary 11.)

Corollary 7. If $n_{1}+n_{2}+\cdots+n_{r} \geq 2$ and $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r}, 1}\right)=6$, then $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r}, 1,2}\right)=$ 6.

Corollary 8. Assume $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1}\right)=6$ where $n_{1}+n_{2}+\cdots+n_{r-1} \geq 2$. Then $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, F_{1}, F_{2}, \ldots, F_{k}, 1}\right)=6$, where each F_{i} is either a single positive even integer, or a list of two integers, $(1, t)$, for some odd integer t. In particular, $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1 * m}\right)=$ 6 for odd m, where $1 \star m$ stands for a sequence of $m 1$'s.

Proof. Assume $\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1}\right)=6$. It suffices to prove the result for the case $k=1$. Assume F_{1} is a single even integer, $F_{1}=n_{r}$. By Corollary 5 and Observation 2 ,

$$
6=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1}\right)=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1+n_{r}}\right)=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, n_{r}, 1}\right)
$$

Next, assume F_{1} is a list of two integers $(1, t)$ for some odd $t=2 s+1$. By Corollaries 7 and 5 , and Observation 2,

$$
6=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1,2}\right)=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1,2(s+1)}\right)=\chi_{s}^{\prime}\left(G_{n_{1}, n_{2}, \ldots, n_{r-1}, 1, t, 1}\right) .
$$

Let k be an even integer. Although it is known [18] that $\chi_{s}^{\prime}\left(G_{k}\right)>6$, there exist graphs $G \in \mathcal{G}_{k}$ with $\chi_{s}^{\prime}(G)=6$. Figures 6 and 7 show two examples. For positive integers x and n, we denote $x \star n$ as an n-term repeated sequence of x.

Figure 6: A strong 6-edge-coloring for $G_{2,2,2}=G_{2,2,1,1}$.

Figure 7: A strong 6-edge-coloring for $G_{1 * 8}$.

By the results we have shown, one can verify that for every positive integer $k \neq 2,4$, there exists $G \in \mathcal{G}_{k}$ (other than necklaces) with $\chi_{s}^{\prime}(G)=6$. This is because $\chi_{s}^{\prime}\left(G_{1}\right)=\chi_{s}^{\prime}\left(G_{1,1,1}\right)=\chi_{s}^{\prime}\left(G_{2,2,1,1}\right)=\chi_{s}^{\prime}\left(G_{1 * 8}\right)=6$, by Corollary 8 , one gets $\chi_{s}^{\prime}\left(G_{2,2,1 \star m}\right)=6$ for even $m \geq 4$, and $\chi_{s}^{\prime}\left(G_{1 \star n}\right)=6$ for $n \neq 2,4,6$.

3 Cubic Halin graphs G with $\chi_{s}^{\prime}(G)=7$

We present some cubic Halin graphs with strong chromatic index 7. In particular, we prove that for any $k \geq 7$, there exists $G \in \mathcal{G}_{k}$ with $\chi_{s}^{\prime}(G)=7$.

Let us start with an example, $\chi_{s}^{\prime}\left(G_{2,2}\right)=7$. Suppose to the contrary that $\chi_{s}^{\prime}\left(G_{2,2}\right)=6$. Choose a strong 6 -edge-coloring f for $G_{2,2}$. By Lemma 3 (i), $f\left(v_{0} u_{3}\right)=$ $f\left(v_{4} v_{5}\right)$. Since the color $f\left(v_{0} u_{3}\right)$ has to be used by the 4 -cycle $\left(u_{1}, u_{2}, v_{2}, v_{1}\right)$, it is the case that $f\left(v_{0} u_{3}\right)=f\left(u_{2} v_{2}\right)$, and so $f\left(v_{4} v_{5}\right)=f\left(u_{2} v_{2}\right)$, a contradiction.

Lemma 9. Let $G=G_{2,3,1, n_{4}, n_{5} \ldots, n_{r}}$ with $r \geq 4$. If f is a strong 6 -edge-coloring for G, then $f\left(u_{1} v_{1}\right)=f\left(u_{6} u_{7+n_{4}}\right)=f\left(v_{7} v_{8}\right)$.

Proof. Without loss of generality, assume that $f\left(v_{0} u_{1}\right)=1, f\left(v_{0} v_{1}\right)=2, f\left(v_{0} u_{3}\right)=3$, $f\left(v_{1} u_{1}\right)=4, f\left(u_{1} u_{2}\right)=5$, and $f\left(v_{1} v_{2}\right)=6$. See the bold faced numbers in Figure 8. Then $f\left(v_{2} u_{2}\right)=3$. By Lemma 3 (i), $f\left(u_{2} u_{6}\right)=2, f\left(v_{2} v_{3}\right)=f\left(u_{4} u_{5}\right)=1$, and $f\left(v_{4} v_{5}\right)=3$. See the italic numbers in Figure 8.

Suppose $f\left(v_{3} u_{3}\right)=x$ and $f\left(u_{3} u_{4}\right)=y$. Then $x \in\{4,5\}$ and $y \in\{4,5,6\}$. By Lemma 3, $f\left(v_{5} u_{5}\right)=x$ and $f\left(v_{5} v_{6}\right)=y$. Let z be the only label in $\{4,5,6\}-\{x, y\}$. Then $\left\{f\left(v_{6} v_{7}\right), f\left(v_{6} u_{6}\right)\right\}=\{1, z\}$, since $v_{6} v_{7}$ and $v_{6} u_{6}$ cannot be labeled by $2,3, x, y$. Let $f\left(u_{6} u_{7+n_{4}}\right)=a$. Then $a \notin\{1,2,3,5, y, z\}$. Hence, it must be the case that $a=x \neq 5$, implying $a=x=4$.

By Lemma 3 (i), $f\left(u_{5} u_{7}\right)=f\left(v_{3} v_{4}\right)=c \in\{5,2\}$. If $c=5$, then $f\left(v_{6} v_{7}\right)=1$ and $f\left(v_{6} u_{6}\right)=z=c=5$, which is impossible as $f\left(u_{1} u_{2}\right)=5$. Hence, $c=2$. Then $f\left(v_{7} u_{7}\right) \notin\{1,2, x, y, z\}$, so $f\left(v_{7} u_{7}\right)=3$. Consequently, $f\left(v_{7} v_{8}\right)=b \notin\{1,2,3, y, z\}$. Therefore, $b=x=4$. This completes the proof.

Figure 8: In $G_{2,3,1, n_{4}, n_{5}, \ldots, n_{r}}$, labels a and b are forced to be 4.

Theorem 10. The following graphs have strong chromatic index 7:
(a) $G_{2,3,1, n_{4}}$.
(b) $G_{2,3,1,1, n_{5}, n_{6}, \ldots, n_{r}}$ with $r \geq 5$.
(c) $G_{2,3,1,3, n_{5}}$.
(d) $G_{2,3,1,3,2, n_{6}, n_{7}, \ldots, n_{r}}$ with $r \geq 6$.
(e) $G_{2,3,1,3,4, n_{6}}$.
(f) $G_{2,3,1,3,4,2, n_{7}, n_{8}, \ldots, n_{r}}$ with $r \geq 7$.

Proof. For each case in the following, we suppose to the contrary that the given graph has strong chromatic index 6 . Let f be a strong 6 -edge-coloring for G. We shall derive a contradiction for each case.
(a) By Corollary 5 we may assume that $n_{4} \leq 2$. By Lemma 9, $f\left(u_{6} u_{7+n_{4}}\right)=$ $f\left(v_{7} v_{8}\right)$, which contradicts the fact that the edges $u_{6} u_{7+n_{4}}$ and $v_{7} v_{8}$ are within distance two apart.
(b) Since $n_{4}=1$, by Lemma $9, f\left(u_{6} u_{8}\right)=f\left(v_{7} v_{8}\right)$, which contradicts the fact that the edges $u_{6} u_{8}$ and $v_{7} v_{8}$ are distance two apart.
(c) By Corollary 5 we may assume that $n_{5} \leq 2$. By Lemma 9 and Corollary 5, $f\left(u_{6} u_{10}\right)=f\left(v_{7} v_{8}\right)=f\left(u_{9} u_{10+n_{5}}\right)$. For the case $n_{5}=1$, this is a contradiction as $u_{6} u_{10}$ and $u_{9} v_{11}$ are of distance two apart. For the case $n_{5}=2$, by Lemma 3 (i), $f\left(u_{6} u_{10}\right)=f\left(v_{11} v_{12}\right)$, and so $f\left(v_{11} v_{12}\right)=f\left(u_{9} v_{12}\right)$, a contradiction.

The proofs for (d), (e), and (f) are similar. We leave the details to the reader.

An immediate consequence of Theorem 10 is that for every integer $k \geq 7$, there exists $G \in \mathcal{G}_{k}$ with $\chi_{s}^{\prime}(G)=7$. This gives infinite counter examples to Conjecture 3 .

4 Special Families

We apply the results and methods established in the previous sections to completely determine the value of $\chi_{s}^{\prime}(G)$ for several families of graphs G in \mathcal{G}_{k}.

Corollary 11. For $m \geqslant 1$, we have

$$
\chi_{s}^{\prime}\left(G_{1 \star m}\right)= \begin{cases}9, & m=2 \\ 7, & m=4,6 \\ 6, & \text { otherwise }\end{cases}
$$

Proof. For $m=2$, as $G_{1,1}=G_{2}$ and $\chi_{s}^{\prime}\left(G_{2}\right)=9$ [18], so the result holds. For $m=4$, $G_{1 \star 4}=G_{2,2}$ so $\chi_{s}^{\prime}\left(G_{1 \star 4}\right)=7$.

Because $G_{3}=G_{1 * 3}$ and $\chi_{s}^{\prime}\left(G_{3}\right)=6$, so $\chi_{s}^{\prime}\left(G_{1 * 3}\right)=6$. By Corollary 8 (letting $n_{1}=n_{2}=\cdots=n_{r-1}=1$) and Figure 7 the result holds for $m=5$ and $m \geqslant 7$.

It remains to show that $\chi_{s}^{\prime}\left(G_{1 \times 6}\right)>6$. Assume to the contrary $\chi_{s}^{\prime}\left(G_{1 \star 6}\right)=6$. As $G_{1 \star 6}=G_{2,1,1,2}$, we may let f be a strong 6 -edge-coloring for $G_{2,1,1,2}$. Without loss of generality, assume $f\left(v_{0} u_{1}\right)=1, f\left(v_{0} v_{1}\right)=2, f\left(v_{0} u_{3}\right)=3, f\left(u_{1} u_{2}\right)=4, f\left(v_{1} u_{1}\right)=5$, and $f\left(v_{1} v_{2}\right)=6$. Then $f\left(v_{2} u_{2}\right)=3, f\left(v_{2} v_{3}\right)=1$, and $f\left(u_{2} u_{4}\right)=2$. These imply that $\left\{f\left(v_{3} v_{4}\right)=f\left(v_{3} u_{3}\right)\right\}=\{4,5\}$, so $f\left(v_{4} u_{4}\right)=f\left(v_{0} u_{1}\right)=6$. By Lemma 3, it must be $f\left(v_{6} v_{7}\right)=6$, which is a contradiction as $v_{6} v_{7}$ and $v_{4} u_{4}$ are distance two apart.

Corollary 12. For $m \geqslant 2$, we have

$$
\chi_{s}^{\prime}\left(G_{2 \star m}\right)= \begin{cases}7, & m=2 \\ 6, & \text { otherwise } .\end{cases}
$$

Proof. At the beginning of Section 3, we have learned that $\chi_{s}^{\prime}\left(G_{2,2}\right)=7$. Figure 6 shows a strong 6 -edge coloring f for $G_{3 \star 2}$. In the following we define a recursive strong 6-edge coloring for $G_{2 \star m}, m \geq 3$.

Initially, let the coloring in Figure 6 be f_{2}. Suppose we have a strong 6 -edge coloring f_{m} for $G_{2 \star m}$. Extend f_{m} to a strong 6 -coloring f_{m+1} for $G_{2 \star(m+1)}$ by:

$$
\begin{aligned}
& f_{m+1}\left(w w^{\prime}\right)=f_{m}\left(w w^{\prime}\right) \text { if } w w^{\prime} \in E\left(G_{2 \star m}\right) ; \\
& f_{m+1}\left(v_{2 m+1} v_{2 m+2}\right)=f_{m}\left(u_{2 m-1} u_{2 m}\right) ; \\
& f_{m+1}\left(u_{2 m-2} u_{2 m+1}\right)=f_{m+1}\left(v_{2 m+2} v_{2 m+3}\right)=f_{m}\left(v_{2 m+1} u_{2 m-2}\right) ; \\
& f_{m+1}\left(u_{2 m} u_{2 m+3}\right)=f_{m+1}\left(v_{2 m+1} u_{2 m+1}\right)=f_{m}\left(v_{2 m+1} u_{2 m}\right) ; \\
& f_{m+1}\left(v_{2 m+2} u_{2 m+2}\right)=f_{m}\left(v_{2 m-1} v_{2 m}\right) ; \\
& f_{m+1}\left(u_{2 m+1} u_{2 m+2}\right)=f_{m}\left(v_{2 m} u_{2 m}\right) ; \text { and } \\
& f_{m+1}\left(v_{2 m+3} u_{2 m+2}\right)=f_{m}\left(v_{2 m} v_{2 m+1}\right) .
\end{aligned}
$$

It is easy to check that the above is a strong 6 -edge coloring for $G_{2 \star(m+1)}$. We shall leave the details to the reader.

Corollary 13. For $m \geqslant 1$, we have

$$
\chi_{s}^{\prime}\left(G_{3 \star m}\right)= \begin{cases}7, & m=2,4,6 \\ 6, & \text { otherwise }\end{cases}
$$

Proof. We first consider $m \neq 2,4,5$. Since $\chi_{s}^{\prime}\left(G_{3}\right)=\chi_{s}^{\prime}\left(G_{5}\right)=6$, by Observations 1 and 2 we have $\chi_{s}^{\prime}\left(G_{1,3,1}\right)=6$. By Corollary 5 , we get $\chi_{s}^{\prime}\left(G_{3,3,3}\right)=6$. Hence, the result holds for $m=1,3$.

Assume $m \geq 6$. If $\chi_{s}^{\prime}\left(G_{2,3 \star(m-4), 2}\right)=6$, then by Corollary $5, \chi_{s}^{\prime}\left(G_{4,3 \star(m-4), 4}\right)=$ $\chi_{s}^{\prime}\left(G_{1,3 *(m-2), 1}\right)=\chi_{s}^{\prime}\left(G_{3 \star m}\right)=6$. Hence, it is enough to find a strong 6 -edge-coloring f for $G_{2,3 \star(m-4), 2}$.

In the following we let $f\left(v_{0} u_{1}\right)=1, f\left(v_{0} v_{1}\right)=2, f\left(v_{0} u_{3}\right)=3, f\left(u_{1} u_{2}\right)=4$, $f\left(v_{1} u_{1}\right)=5$, and $f\left(v_{1} v_{2}\right)=6$. Consequently, by Lemma 3, $f\left(v_{2} v_{3}\right)=f\left(u_{4} u_{5}\right)=1$, $f\left(u_{2} u_{6}\right)=f\left(v_{7} v_{8}\right)=2$, and $f\left(u_{2} v_{2}\right)=f\left(v_{4} v_{5}\right)=3$. Since $f\left(v_{5} v_{6}\right), f\left(u_{2} u_{6}\right) \neq 4$, so the color 3 has to be used in the 4 -cycle $\left(u_{6} u_{7} v_{7} v_{6}\right)$, it must be the case that $f\left(v_{7} u_{7}\right)=3$.

Assume m is even. Let $m-4=2 k$. Define $f\left(v_{4} u_{4}\right)=4, f\left(u_{3} u_{4}\right)=6$, and the remaining by the following recursive process for $1 \leq t \leq 2 k$:

$$
\begin{aligned}
f\left(v_{3 t} v_{3 t+1}\right) & = \begin{cases}f\left(v_{3 t-2} u_{3 t-2}\right) & \text { if } t \text { is even; } \\
f\left(v_{3 t-3} v_{3 t-2}\right) & \text { if } t \text { is odd. }\end{cases} \\
f\left(v_{3 t} u_{3 t}\right) & = \begin{cases}f\left(u_{3 t-2} u_{3 t-1}\right) & \text { if } t \text { is even; } \\
f\left(v_{3 t-2} u_{3 t-2}\right) & \text { if } t \text { is odd. }\end{cases} \\
f\left(u_{3 t} u_{3 t+1}\right) & = \begin{cases}f\left(v_{3 t-1} u_{3 t-1}\right) & \text { if } t \text { is even; } \\
f\left(u_{3 t-2} u_{3 t-1}\right) & \text { if } t \text { is odd, } t \geq 3 .\end{cases} \\
f\left(v_{3 t+1} u_{3 t+1}\right) & = \begin{cases}f\left(v_{3 t-2} v_{3 t-1}\right) & \text { if } t \text { is even; } \\
f\left(v_{3 t-1} u_{3 t-1}\right) & \text { if } t \text { is odd, } t \geq 3 .\end{cases}
\end{aligned}
$$

By Lemma 3, the colors for the remaining edges are fixed. It is not hard to see that f is a strong 6 -edge-coloring for $G_{2,3 *(2 k), 2}$. See Figure 9 for an example.

Assume m is odd. Let $m-4=2 k+1$. Let $f\left(v_{3} v_{4}\right)=4, f\left(v_{3} u_{3}\right)=5, f\left(u_{3} u_{4}\right)=6$, and $f\left(u_{4} v_{4}\right)=2$. For $2 \leq t \leq 2 k$, define f by the following recursive process:

Figure 9: A strong 6-edge-coloring for $G_{2,3,3,2}$.

$$
\begin{aligned}
f\left(v_{3 t} v_{3 t+1}\right) & = \begin{cases}f\left(v_{3 t-3} v_{3 t-2}\right) & \text { if } t \text { is even; } \\
f\left(u_{3 t-2} u_{3 t-1}\right) & \text { if } t \text { is odd. }\end{cases} \\
f\left(v_{3 t} u_{3 t}\right) & = \begin{cases}f\left(u_{3 t-2} u_{3 t-1}\right) & \text { if } t \text { is even; } \\
f\left(v_{3 t-2} u_{3 t-2}\right) & \text { if } t \text { is odd }\end{cases} \\
f\left(u_{3 t} u_{3 t+1}\right) & = \begin{cases}f\left(v_{3 t-1} u_{3 t-1}\right) & \text { if } t \text { is even; } \\
f\left(v_{3 t-2} v_{3 t-1}\right) & \text { if } t \text { is odd }\end{cases} \\
f\left(v_{3 t+1} u_{3 t+1}\right) & = \begin{cases}f\left(u_{3 t-2} v_{3 t-2}\right) & \text { if } t \text { is even, } t \neq 2 ; \\
f\left(u_{3 t-1} v_{3 t-1}\right) & \text { if } t \text { is odd. }\end{cases}
\end{aligned}
$$

Note, for $t=2$ in the last case above, $f\left(v_{7} u_{7}\right)=3$ is fixed as discussed at the beginning of the proof.

For $t=2 k+1$, let $f\left(v_{6 k+3} v_{6 k+4}\right)=f\left(u_{6 k+1} v_{6 k+1}\right), f\left(v_{6 k+3} u_{6 k+3}\right)=f\left(u_{6 k+1} u_{6 k+2}\right)$, $f\left(u_{6 k+3} u_{6 k+4}\right)=f\left(v_{6 k+1} v_{6 k+2}\right)$, and $f\left(v_{6 k+4} u_{6 k+4}\right)=f\left(u_{6 k+2} v_{6 k+2}\right)$.

Again, by Lemma 3, the colors for the remaining edges are fixed. It is not hard to see that f is a strong 6 -edge-coloring for $G_{2,3 \star(2 k+1), 2}$. See Figure 10 for an example.

Figure 10: A strong 6-edge-coloring for $G_{2,3,3,3,2}$.

Now consider $m=2$. Because $\chi_{s}^{\prime}\left(G_{3,1}\right)=\chi_{s}^{\prime}\left(G_{4}\right)>6$, Corollary 5 implies that $\chi_{s}^{\prime}\left(G_{3,3}\right)>6$, so $\chi_{s}^{\prime}\left(G_{3,3}\right)=7$.

For $m=4$, since $\chi_{s}^{\prime}\left(G_{2,2}\right)>6$, by Corollary 5 , we get $\chi_{s}^{\prime}\left(G_{4,4}\right)=\chi_{s}^{\prime}\left(G_{1,3,3,1}\right)>6$. Use Corollary 5 twice again, we obtain $\chi_{s}^{\prime}\left(G_{3,3,3,3}\right)>6$, so $\chi_{s}^{\prime}\left(G_{3,3,3,3}\right)=7$.

For $m=5$, by Theorem 10 (a), $\chi_{s}^{\prime}\left(G_{2,3,1,1}\right)=\chi_{s}^{\prime}\left(G_{2,3,2}\right)=7$. This implies, by Corollary $5, \chi_{s}^{\prime}\left(G_{4,3,4}\right)=\chi_{s}^{\prime}\left(G_{1,3,3,3,1}\right)=\chi_{s}^{\prime}\left(G_{3 \times 5}\right)=7$.

Acknowledgments. The authors thank the referees for their prompt reports with many constructive suggestions.

References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231 - 252.
[2] R. A. Brualdi and J. Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51 - 58.
[3] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97 - 102.
[4] D. Cranston, Strong edge-coloring graphs with maximum degree 4 using 22 colors, Discrerte Math. 306 (2006) 2772 - 2778.
[5] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) $81-92$.
[6] P. Erdős and J. Nešetřil, [Problem], in: G. Halász and V. T. Sós (eds.), Irregularities of Partitions, Springer, Berlin, 1989, 162 -163.
[7] R. J. Faudree, R. H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) $205-211$.
[8] J. L. Fouquet and J. Jolivet, Strong edge-coloring of graphs and applications to multi- k-gons, Ars Combin. 16A (1983) 141 - 150.
[9] J. L. Fouquet and J. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory (Waterloo 1982), 1984, 247 - 264.
[10] M. C. Golumbic and M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157 - 165.
[11] P. Horák, The strong chromatic index of graphs with maximun degree four, Contemp. Methods Graph Theory, 1990, $399-403$.
[12] P. Horák, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) $151-160$.
[13] H.-H. Lai, K.-W. Lih and P.-Y. Tsai, The strong chromatic index of Halin graphs, Discrete Math. (2011), doi:10.1016/j.disc.2011.09.016.
[14] K.-W. Lih and D. D.-F. Liu, On the strong chromatic index of cubic Halin graphs, Appl. Math. Lett. (2011), doi:10.1016/j.aml.2011.10.046.
[15] M. Mahdian, On the computational complexity of strong edge coloring, Discrete Appl. Math. 118 (2002) $239-248$.
[16] M. Maydanskiy, The incidence coloring cofor graphs of maximum degree 3, Discrete Math. 292 (2005) 131 - 141.
[17] M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Appl. Math. 143 (2004) 285 - 291.
[18] W. C. Shiu, P. C. B. Lam and W. K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211 - 222.
[19] W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett. 22 (2009) $754-758$.
[20] J. Wu and W. Lin, The strong chromatic index of a class of graphs, Discrete Math. 308 (2008) 6254-6262.

[^0]: *E-mail: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC98-2115-M-002-013-MY3.
 ${ }^{\dagger}$ Corresponding author. Email: dliu@calstatela.edu.

