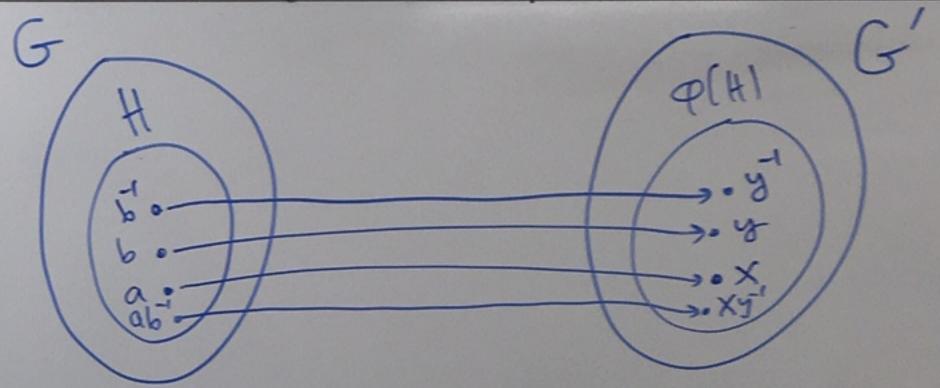
From lecture but never proved. Lemma: Let φ : $G \to G'$ be a homomorphism. Let $H \leq G$. Then $\varphi(H) \leq G'$. Proof: Det 16 and 16 be the identities of G and G. Since HEG we have $1a \in H$. Then, $1a = \varphi(1a) \in \varphi(H)$. Q(H)

(2) Pick x,y ∈ Ф(H). There exist a, b ∈ H with φ(a)=x and φ(b)=4. Since $H \leq G$, we have $b' \in H$.



Since \(\phi \) is a homomorphism, \(\phi \) = \(\phi \) = \(\phi \) = \(\phi \). Since H < G, ab' < H.

So,
$$xy'' = \varphi(a)\varphi(b'')$$

= $\varphi(ab'') \in \varphi(H)$.

By (1) and (3), 9(H) < G'.

Aut (Z4) = { P1, P3} $\varphi(x) = x$ $P_3(x) = \overline{3x}$

Theorem: Let G be a cyclic group of size n. For each $\alpha \in \mathbb{Z}$, define $\varphi: G \to G$ where $\varphi(x) = X^{\alpha}$. Then, $Aut(G) = \{ \{ \{ \{ \{ \{ \} \} \} \} \} \}$ Proof: Let S= { Pa | 1 ≤ a ≤ n } We will prove that Aut (G) = S. Let PaES where | Easin and god(a,n)=1.

Fact: Let f: X->Y Where X and Y are finite of DA-LITE

What's the order of g^{α} g^{α}

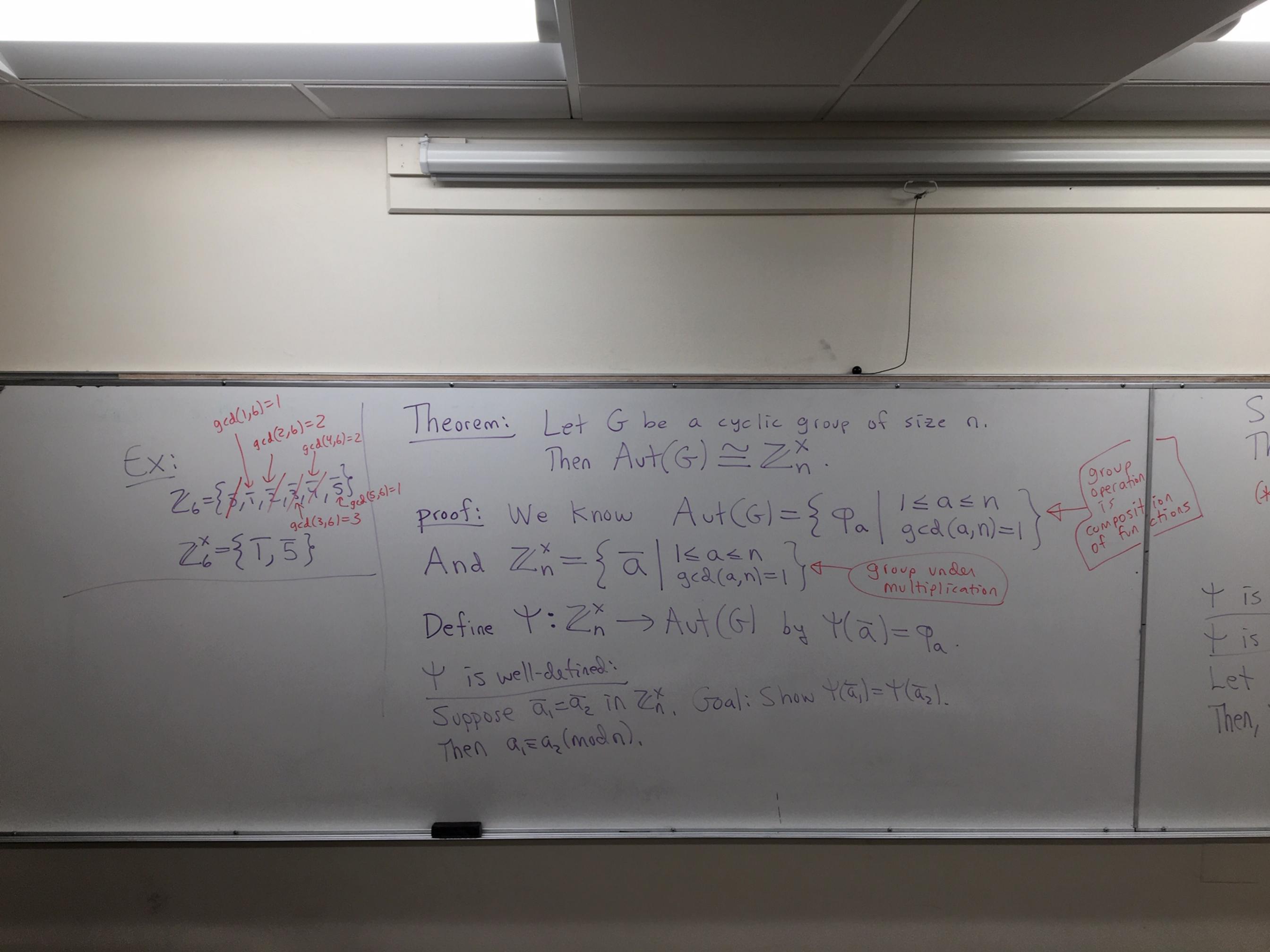
2 Aut $G \subseteq S$ Let $\varphi \in Aut(G)$. So $\varphi: G \ni G$ is an isomorphism. Since G is cyclic, $G = \langle g \rangle$ for since $g \in G$. Since $\varphi(g) \in G = \{1, 9, 9\}, \dots, 9^{n-1}\}$ we know $\varphi(g) = g^2$ where

Let $x \in G$. Then $x = g^k$ where $k \in \mathbb{Z}$. So, $\varphi(x) = \varphi(g^k) = \varphi(g)^k = (g^k)^n = \chi^n = \varphi_a(x)$. That is, $\varphi = \varphi_a$. Since φ is an isomorphism, φ is onto. So, $\varphi(G) = G$. Thus, $G = \varphi(G) = \varphi(G) = \{\varphi(G) \mid k \in \mathbb{Z}\}$ $= \{(G^k)^\alpha \mid k \in \mathbb{Z}\} = \{g^\alpha\}$ $= \{(g^\alpha)^k \mid k \in \mathbb{Z}\} = \{g^\alpha\}$ Thus, $|g^\alpha| = n$. So, $n = |g^{\alpha}| = \frac{|g|}{gcd(1gl, \alpha)} = \frac{n}{gcd(n, \alpha)}$.

Thus, $gcd(n, \alpha) = 1$.

Therefore, $\varphi = \varphi_{\alpha}$ with $1 \le \alpha \le n$ and $gcd(\alpha, n) = 1$.

So, $\varphi \in S$.



DA-LITE

groupin joins chors

So, $Q_1 - Q_2 = nk$ where $k \in \mathbb{Z}$. Then, $f(\overline{a_1}) = Q_{a_1} \stackrel{\text{(*)}}{=} Q_{a_2} = f(\overline{a_2})$ (*) because given $x \in G$ we have $Q_a(x) = x^{a_1} = x^{a_2} = x^{a_2} = y^{a_2} =$

Let $\overline{\alpha}_{1}$, $\overline{\alpha}_{2} \in \mathbb{Z}_{n}^{\times}$. Then, $Y(\overline{\alpha}_{1} \cdot \overline{\alpha}_{2}) = Y(\overline{\alpha}_{1} \cdot \overline{\alpha}_{2}) = P_{a_{1}a_{2}} = P_{a_{1}} \cdot P_{a_{2}} \cdot P_{a_{2}} = Y(\overline{\alpha}_{1}) \cdot Y(\overline{\alpha}_{2}) = P_{a_{1}} \cdot P_{a_{2}} \cdot P_{a_{2}} \cdot P_{a_{1}} \cdot P_{a_{2}} \cdot P_{a_{2}} \cdot P_{a_{1}} \cdot P_{a_{2}} \cdot P_{a_{2}} \cdot P_{a_{1}} \cdot P_{a_{2}} \cdot P_{$