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Abstract

Let D be a set of positive integers. The kappa value of D, denoted
by κ(D), is the parameter involved in the so called “lonely runner

conjecture.” Let x, y be positive integers, we investigate the kappa
values for the family of sets D = {2, 3, x, y}. For a fixed positive

integer x > 3, the exact values of κ(D) are determined for y = x + i,
1 ≤ i ≤ 6. These results lead to some asymptotic behavior of κ(D)

for D = {2, 3, x, y}.

1 Introduction

Let D be a set of positive integers. For any real number x, let ||x|| denote the
minimum distance from x to an integer, that is, ||x|| = min{dxe−x, x−bxc}.
For any real t, denote ||tD|| the smallest value ||td|| among all d ∈ D. The
kappa value of D, denoted by κ(D), is the supremum of ||tD|| among all real
t. That is,

κ(D) := sup{α : ||tD|| ≥ α for some t ∈ <}.

Wills [20] conjectured that κ(D) ≥ 1/(|D|+1) is true for all finite sets D.
This conjecture is also known as the lonely runner conjecture by Bienia et al.
[2]. Suppose m runners run laps on a circular track of unit circumference.
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Each runner maintains a constant speed, and the speeds of all the runners
are distinct. A runner is called lonely if the distance on the circular track
between him or her and every other runner is at least 1/m. Equivalently,
the conjecture asserts that for each runner, there is some time t when he or
she becomes lonely. The conjecture has been proved true for |D| ≤ 6 (cf.
[1, 3, 6, 7]), and remains open for |D| ≥ 7.

The parameter κ(D) is closely related to another parameter of D called
the “density of integral sequences with missing differences.” For a set D of
positive integers, a sequence S of non-negative integers is called a D-sequence
if |x− y| 6∈ D for any x, y ∈ S. Denote S(n) as |S ∩{0, 1, 2, · · · , n−1}|. The
upper density δ(S) and the lower density δ(S) of S are defined, respectively,
by δ(S) = limn→∞S(n)/n and δ(S) = limn→∞S(n)/n. We say S has density
δ(S) if δ(S) = δ(S) = δ(S). The parameter of interest is the density of D,
µ(D), defined by

µ(D) := sup { δ(S) : S is a D-sequence}.

It is known that for any set D (cf. [4]):

µ(D) ≥ κ(D). (1)

For two-element sets D = {a, b}, Cantor and Gordon [4] proved that

κ(D) = µ(D) =
b a+b

2
c

a+b
. For 3-element sets D, if D = {a, b, a + b} it was

proved that κ(D) = µ(D) and the exact values were determined (see Theorem
2 below). For the general case D = {i, j, k}, various lower bounds of κ(D)
were given by Gupta [11], in which the values of µ(D) were also studied. In
addition, among other results it was shown in [11] that if D is an arithmetic
sequence then κ(D) = µ(D) and the value was determined.

The parameters κ(D) and µ(D) are closely related to coloring parameters
of distance graphs. Let D be a set of positive integers. The distance graph
generated by D, denoted as G(Z, D), has all integers Z as the vertex set. Two
vertices are adjacent whenever their absolute value difference falls in D. The
chromatic number (minimum number of colors in a proper vertex-coloring)
of the distance graph generated by D is denoted by χ(D). It is known that
χ(D) ≤ d1/κ(D)e for any set D (cf. [21]).

The fractional chromatic number of a graph G, denoted by χf(G), is the
minimum ratio m/n (m, n ∈ Z

+) of an (m/n)-coloring, where an (m/n)-
coloring is a function on V (G) to n-element subsets of [m] = {1, 2, · · · , m}
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such that if uv ∈ E(G) then f(u)∩f(v) = Ø. It is known that for any graph
G, χf(G) ≤ χ(G) (cf. [21]).

Denote the fractional chromatic number of G(Z, D) by χf(D). Chang et
al. [5] proved that for any set of positive integers D, it holds that χf (D) =
1/µ(D). Together with (1) we obtain

1

µ(D)
= χf(D) ≤ χ(D) ≤ d

1

κ(D)
e. (2)

The chromatic number of distance graphs G(Z, D) with D = {2, 3, x, y}
was studied by several authors. For prime numbers x and y, the values of
χ(D) for this family were first studied by Eggleton, Erdős and Skilton [10]
and later on completely solved by Voigt and Walther [18]. For general values
of x and y, Kemnitz and Kolberg [13] and Voigt and Walther [19] determined
χ(D) for some values of x and y. This problem was completely solved for all
values of x and y by Liu and Setudja [15], in which κ(D) was utilized as one
of the main tools. In particular, it was proved in [15] that κ(D) ≥ 1/3 for
many sets in the form D = {2, 3, x, y}. By (2), for those sets it holds that
χ(D) = 3.

In this article we further investigate those previously established lower
bounds of κ(D) for the family of sets D = {2, 3, x, y}. In particular, we
determine the exact values of κ(D) for D = {2, 3, x, y} with |x − y| ≤ 6.
Furthermore, for some cases it holds that κ(D) = µ(D). Our results also
lead to asymptotic behavior of κ(D).

2 Preliminaries

We introduce terminologies and known results that will be used to determine
the exact values of κ(D). It is easy to see that if the elements of D have a
common factor r, then κ(D) = κ(D′) and µ(D) = µ(D′), where D′ = D/r =
{d/r : d ∈ D}. Thus, throughout the article we assume that gcd(D) = 1,
unless it is indicated otherwise.

The following proposition is derived directly from definitions.

Proposition 1. If D ⊆ D′ then κ(D) ≥ κ(D′) and µ(D) ≥ µ(D′).

The next result was established by Liu and Zhu [16], after confirming a
conjecture of Rabinowitz and Proulx [17].
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Theorem 2. [16] Suppose M = {a, b, a + b} for some positive integers a and
b with gcd(a, b) = 1. Then

µ(M) = κ(M) = max

{

b2b+a
3

c

2b + a
,
b2a+b

3
c

2a + b

}

.

By Proposition 1, if {a, b, a+ b} ⊆ D for some a and b, then Theorem 2 gives
an upper bound for κ(D).

For a D-sequence S, denote S[n] = |{0, 1, 2, . . . , n} ∩ S|. The next result
was proved by Haralambis [12].

Lemma 3. [12] Let D be a set of positive integers, and let α ∈ (0, 1]. If
for every D-sequence S with 0 ∈ S there exists a positive integer n such that
S[n]
n+1

≤ α, then µ(D) ≤ α.

For a given D-sequence S, we shall write elements of S in an increasing
order, S = {s0, s1, s2, . . .} with s0 < s1 < s2 < . . ., and denote its difference
sequence by

∆(S) = {δ0, δ1, δ2, . . .} where δi = si+1 − si.

We call a subsequence of consecutive terms in ∆(S), δa, δa+1, . . . , δa+b−1,
generates a periodic interval of k copies, k ≥ 1, if δj(a+b)+i = δa+i for all
0 ≤ i ≤ b−1, 1 ≤ j ≤ k−1. We denote such a periodic subsequence of ∆(S)
by (δa, δa+1, . . . , δa+b−1)

k. If the periodic interval repeats infinitely, then we
simply denote it by (δa, δa+1, . . . , δa+b−1). If ∆(S) is infinite periodic, except
the first finite number of terms, with the periodic interval (t1, t2, . . . , tk), then

the density of S is k/(
k

∑

i=1

ti).

Proposition 4. A sequence of non-negative integers S is a D-sequence if

and only if
b

∑

i=a

δi 6∈ D for every a ≤ b.

Proposition 5. Assume 2, 3 ∈ D. If S is a D-sequence, then δi + δi+1 ≥ 5
for all i. The equality holds only when {δi, δi+1} = {1, 4}. Consequently,
µ(D) ≤ 2/5.

Lemma 6. Let D = {2, 3} ∪ A. Then κ(D) = 2/5 if and only if A ⊆ {x :
x ≡ 2, 3 (mod 5)}. Furthermore, if κ(D) = 2/5, then µ(D) = 2/5.
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Proof. Let D = {2, 3}∪A. Assume A ⊆ {x : x ≡ 2, 3 (mod 5)}. Let t = 1/5.
Then ||td|| ≥ 2/5 for all d ∈ D. Hence κ(D) ≥ 2/5. On the other hand, the
density of the infinite periodic D-sequence S with ∆(S) = (1, 4) is 2/5. By
Proposition 5, this is an optimal D-sequence. Hence, µ(D) = 2/5, implying
κ(D) = 2/5.

Conversely, assume κ(D) = 2/5. Then µ(D) ≥ 2/5. By Proposition 5,
µ(D) = 2/5. By Proposition 4, this implies that if d ∈ D, then d 6≡ 0, 1, 4
(mod 5). Thus the result follows.

Note, in D = {2, 3, x, y}, if x = 1, then it is known [16] and easy to
see that µ(D) = κ(D) = 1/4 if y is not a multiple of 4 (with ∆(S) = (4));
otherwise y = 4k and µ(D) = κ(D) = k/(4k + 1) (with ∆(S) = ((4)k−15)).
Hence throughout the article we assume x > 3.

Another method we will utilize is an alternative definition of κ(D). In
this definition, for a projected lower bound α of κ(D), for each element z in D
the valid time t for z to achieve α is expressed as a union of disjoint intervals.
Let α ∈ (0, 1

2
). For positive integer i, define Ii(α) = {t ∈ (0, 1) : ‖ ti ‖ ≥ α}.

Equivalently,

Ii(α) = {t : n + α ≤ ti ≤ n + 1 − α, 0 ≤ n ≤ i − 1}.

That is, Ii consists of intervals of reals with length (1 − 2α)/i and centered
at (2n + 1)/(2i), n = 0, 1, . . . , i − 1. By definition, κ(D) ≥ α if and only if
⋂

i∈D Ii(α) 6= Ø. Thus,

κ(D) = sup

{

α ∈ (0,
1

2
) :

⋂

i∈D

Ii(α) 6= Ø

}

.

Observe that if
⋂

i∈D

Ii(α) consists of only isolated points, then κ(D) ≤ α.

Hence, we have the following:

Proposition 7. For a set D, κ(D) ≤ d/c if
⋂

i∈D

Ii is a set of isolated points,

where

Ii =
i−1
⋃

n=0

[

d + cn

i
,
c − d + cn

i

]

.
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3 D = {2, 3, x, y} for y = x + 1, x + 2, x + 3

Theorem 8. Let D = {2, 3, x, x + 1}, x ≥ 4. Then

κ(D) = µ(D) =

{

2b x+3

5
c+1

x+3
if x ≡ 1 (mod 5);

2b x+3

5
c

x+3
otherwise.

Proof. We prove the following cases.

Case 1. x = 5k + 2. The result follows by Lemma 6.

Case 2. x = 5k+3. Let t = (k+1)/(5k+6). Then ||dt|| ≥ (2k+2)/(5k+6)
for every d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 6).

By (1) it remains to show that µ(D) ≤ (2k + 2)/(5k + 6). Assume to
the contrary that µ(D) > (2k + 2)/(5k + 6). By Lemma 3, there exists a
D-sequence S with S[n]/(n + 1) > (2k + 2)/(5k + 6) for all n ≥ 0. This
implies, for instance, S[0] ≥ 1, so s0 = 0; S[2] ≥ 2, so s1 = 1 (as 2, 3 ∈ D);
S[5] ≥ 3, so s3 = 5. Moreover, S[5k + 5] ≥ 2k + 3. By Proposition 5, it
must be (δ0, δ1, δ2, . . . , δ2k+1) = (1, 4, 1, 4, . . . , 1, 4). This implies 5k + 5 ∈ S,
which is impossible since 1 ∈ S and 5k + 4 ∈ D. Therefore, µ(D) = κ(D) =
(2k + 2)/(5k + 6).

Case 3. x = 5k+4. Let t = (k+1)/(5k+7). Then ||dt|| ≥ (2k+2)/(5k+7)
for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 7).

By (1) it remains to show that µ(D) ≤ (2k + 2)/(5k + 7). Assume to
the contrary that µ(D) > (2k + 2)/(5k + 7). By Lemma 3, there exists a
D-sequence S with S[n]/(n + 1) > (2k + 2)/(5k + 7) for all n ≥ 0. This
implies, for instance, S[0] ≥ 1, so s0 = 0; S[3] ≥ 2, so s1 = 1 (as 2, 3 ∈ D);
and S[5k + 6] ≥ 2k + 3. By Proposition 5, either 5k + 5 or 5k + 6 is an
element in S. This is impossible since 0, 1 ∈ S and 5k + 4, 5k + 5 ∈ D. Thus
µ(D) = κ(D) = (2k + 2)/(5k + 7).

Case 4. x = 5k+5. Let t = (k+1)/(5k+8). Then ||dt|| ≥ (2k+2)/(5k+8)
for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 8).

It remains to show µ(D) ≤ (2k + 2)/(5k + 8). Assume to the contrary
that µ(D) > (2k + 2)/(5k + 8). By Lemma 3, there exists a D-sequence S
with S[n]/(n + 1) > (2k + 2)/(5k + 8) for all n ≥ 0. Similar to the above,
one has 0, 1 ∈ S and S[5k + 7] ≥ 2k + 3. This implies that one of 5k + 5,
5k + 6, or 5k + 7 is an element in S, which is again impossible. Therefore,
µ(D) = κ(D) = (2k + 2)/(5k + 8).
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Case 5. x = 5k+1. Let t = (k+1)/(5k+4). Then ||dt|| ≥ (2k+1)/(5k+4)
for all d ∈ D. Hence κ(D) ≥ (2k + 1)/(5k + 4).

Now we show µ(D) ≤ (2k + 1)/(5k + 4). Assume to the contrary that
µ(D) > (2k + 1)/(5k + 4). By Lemma 3, (s0, s1) = (0, 1), and S[5k + 3] ≥
2k + 2. Because S[5k] ≤ 2k + 1, so S ∩ {5k + 1, 5k + 2, 5k + 3} 6= Ø, which
is impossible. Therefore, µ(D) = κ(D) = (2k + 1)/(5k + 4).

By the above proofs, one can extend the family of sets D to the following:

Corollary 9. Let D = {2, 3, x, x + 1} ∪ D′, where D′ ⊆ {y : y ≡ ±2,±3
(mod (x + 3))}. Then µ(D) = κ(D) = µ({2, 3, x, x + 1}).

Corollary 10. Let D = {2, 3, x, x + 1}. Then

lim
x→∞

κ(D) =
2

5
.

Theorem 11. Let D = {2, 3, x, x + 2}, x ≥ 4. Assume x + 4 = 6β + r with
0 ≤ r ≤ 5. Then

κ(D) =











b x+4

3
c

x+4
if 0 ≤ r ≤ 2;

b 2x+1

3
c

2x+2
if 3 ≤ r ≤ 5.

Furthermore, κ(D) = µ(D) if r 6= 3.

Proof. We prove the following cases.

Case 1. x = 6k + 2. Then r = 0. Let t = 1/6. Then ||dt|| ≥ 1/3 for all
d ∈ D. Hence κ(D) ≥ 1/3.

Now we prove µ(D) ≤ 1/3. Let M ′ = {2, x, x + 2} = {2, 6k + 2, 6k + 4}.
By Theorem 2 with M = {1, 3k+1, 3k+2} , we obtain µ(M ′) = µ(M) = 1/3.
Because M ′ ⊆ D, so µ(D) ≤ µ(M ′) = 1/3.

Case 2. x = 6k + 3. Then r = 1. Let t = (k + 1)/(6k + 7). Then
||dt|| ≥ (2k + 2)/(6k + 7) for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(6k + 7).

By Theorem 2 with M = {2, x, x+2} = {2, 6k+3, 6k+5}, we get µ(M) =
(2k + 2)/(6k + 7). Because M ⊆ D, so µ(D) ≤ µ(M) = (2k + 2)/(6k + 7).
Thus, the result follows.

Case 3. x = 6k + 4. Then r = 2. Let t = (k + 1)/(6k + 8). Then
||dt|| ≥ (2k + 2)/(6k + 8) for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(6k + 8).
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By Theorem 2 with M = {2, x, x + 2} = {2, 6k + 4, 6k + 6} which can
be reduced to M ′ = {1, 3k + 2, 3k + 3}, we obtain µ(M) = (k + 1)/(3k + 4).
Therefore, µ(D) ≤ µ(M) = (2k + 2)/(6k + 8). So the result follows.

Case 4. x = 6k + 5. Then r = 3. Let t = (2k + 3)/(12k + 12). Then
||dt|| ≥ (4k +3)/(12k +12) for all d ∈ D. Hence κ(D) ≥ (4k +3)/(12k +12).

By Proposition 7, it remains to show that
⋂

i=2,3,x,x+2

Ii is a set of isolated

points, where

Ii =
i−1
⋃

n=0

[

4k + 3 + n(12k + 12)

i
,
8k + 9 + n(12k + 12)

i

]

.

Let I =
⋂

i=2,3,x,x+2

Ii. By symmetry it is enough to consider the interval

I ∩ [0, (12k + 12)/2]. In the following we claim I ∩ [0, 6k + 6] = {2k + 3}.
(Indeed, this single point is the numerator of the t value at the beginning of
the proof.)

Note that I2∩I3∩[0, 6k+6] = [(4k+3)/2, (8k+9)/3]. Denote this interval
by

I2,3 =

[

4k + 3

2
,
8k + 9

3

]

.

We then begin to investigate possible values of n for Ix and Ix+2, respectively,
that will fall within I2,3. First, we compare the Ix intervals with I2,3. Recall

Ix =

[

3 + 4k + n(12 + 12k)

6k + 5
,
8k + 9 + n(12 + 12k)

6k + 5

]

, 0 ≤ n ≤ 6k + 4.

By calculation, the intervals of Ix that intersect with I2,3 are those with
n ≥ k. Similarly, we compare Ix+2 intervals with I2,3. Recall

Ix+2 =

[

3 + 4k + n(12 + 12k)

6k + 7
,
8k + 9 + n(12 + 12k)

6k + 7

]

, 0 ≤ n ≤ 6k + 6.

By calculation, the intervals of Ix+2 that intersect with I2,3 are those with
n ≥ k + 1.

Next, we consider the intersection between intervals of Ix and Ix+2. Let
n = k + a for some a ≥ 0 for the Ix interval, and let n = k + a′ for some
a′ ≥ 1 for the Ix+2 interval. By taking the common denominator of the Ix

and Ix+2 intervals we obtain the following numerators of those intervals:

for Ix : [21 + 84a + 130k + 156ak + 180k2 + 72ak2 + 72k3,
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63 + 84a + 194k + 156ak + 204k2 + 72ak2 + 72k3];

for Ix+2 : [15 + 60a′ + 98k + 132a′k + 156k2 + 72a′k2 + 72k3,

45 + 60a′ + 154k + 132a′k + 180k2 + 72a′k2 + 72k3].

Using a = a′ = 1, we get

for Ix : [105 + 286k + 252k2 + 72k3, 147 + 350k + 276k2 + 72k3]

for Ix+2 : [75 + 230k + 228k2 + 72k3, 105 + 286k + 252k2 + 72k3].

Thus, there is a single point intersection for Ix and Ix+2 when a = a′ = 1,
which is {2k+3}. This single point intersection is also within the I2,3 interval.
Hence, {2k + 3} ∈ I ∩ [0, 6k + 6].

In addition, through inspection it is clear that making n = k (i.e. a = 0)
for the Ix interval and n ≥ k+1 (a′ ≥ 1) for the Ix+2 interval removes Ix and
Ix+2 from intersecting one another. For all other cases, a = 1 and a′ ≥ 2,
a ≥ 2 and a′ = 1, or a, a′ ≥ 2, there will never be an intersection of intervals
for all elements in D, either because the I2,3 interval is too small or because
the Ix+2 elements become too big. Thus, I ∩ [0, 6k + 6] = {2k + 3}.

Case 5. x = 6k + 6. Then r = 4. Let t = (2k + 3)/(12k + 14). Then
||dt|| ≥ (4k +4)/(12k +14) for all d ∈ D. Hence κ(D) ≥ (4k +4)/(12k +14).

By Theorem 2 with M = {2, x, x + 2} = {2, 6k + 6, 6k + 8} which can be
reduced to M ′ = {1, 3k+3, 3k+4}, we get µ(M) = κ(M) = (2k+2)/(6k+7).
Hence, µ(D) ≤ µ(M) = (2k + 2)/(6k + 7).

Case 6. x = 6k + 7. Then r = 5. Let t = (2k + 3)/(12k + 16). Then
||dt|| ≥ (4k +5)/(12k +16) for all d ∈ D. Hence κ(D) ≥ (4k +5)/(12k +16).

By Theorem 2 with M = {2, x, x + 2} = {2, 6k + 7, 6k + 9}, we obtain
µ(M) = κ(M) = (4k + 5)/(12k + 16). Therefore, µ(D) ≤ (4k + 5)/(12k +
16).

Theorem 12. Let D = {2, 3, x, x + 3}, x ≥ 4. Assume (2x + 3) = 9β + r
with 0 ≤ r ≤ 8. Then

κ(D) =











3b 2x+3

9
c

2x+3
if 0 ≤ r ≤ 5;

b x+5

3
c

x+6
if 6 ≤ r ≤ 8.

Furthermore, if r = 0, 1, 3, 6, 8 then κ(D) = µ(D).
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Proof. We prove the following cases:

Case 1. x = 9k + 3. Then r = 0. Let t = 2/9. Then ||dt|| ≥ 1/3 for all
d ∈ D. Hence κ(D) ≥ (6k + 3)/(18k + 9) = 1/3.

By Theorem 2 with M = {3, x, x + 3} = {3, 9k + 3, 9k + 6}, which can
be reduced to M ′ = {1, 3k + 1, 3k + 2}, resulting in µ(M) = κ(M) = 1/3.
Because M ⊆ D, so µ(D) = µ(M) = 1/3.

Case 2. x = 9k + 8. Then r = 1. Let t = (4k + 4)/(18k + 19). Then
||dt|| ≥ (6k +6)/(18k +19) for all d ∈ D. Hence κ(D) ≥ (6k +6)/(18k +19).

By Theorem 2 with M = {3, x, x+3}, we get κ(M) = (6k+6)/(18k+19).
Hence, µ(D) ≤ κ(M) = (6k + 6)/(18k + 19).

Case 3. x = 9k + 4. Then r = 2. Let t = (4k + 2)/(18k + 11). Then
||dt|| ≥ (6k +3)/(18k +11) for all d ∈ D. Thus, κ(D) ≥ (6k +3)/(18k +11).

The proof for the other direction is similar to the proof of Case 4 in
Theorem 11. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(11/2)] =

{4k + 2}. This single point of intersection occurs when n = 2k in the Ix

interval, and n = 2k + 1 in the Ix+3 interval.

Case 4. x = 9k. Then r = 3. Let t = 4k/(18k + 3). Then ||dt|| ≥
(6k)/(18k + 3) for all d ∈ D. Thus κ(D) ≥ (2k)/(6k + 1).

By Theorem 2 with M = {3, x, x +3} = {3, 9k, 9k +3}, µ(M) = κ(M) =
(2k)/(6k + 1). Hence, the result follows.

Case 5. x = 9k + 5. Then r = 4. Let t = (4k + 2)/(18k + 13). Then
||dt|| ≥ (6k + 3)/(18k + 13) for all d ∈ D. Thus κ(D) ≥ (6k + 3)/(18k + 13).

The proof for the other direction is similar to the proof of Case 4 in
Theorem 11. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(13/2)] =

{4k + 2}. This single point of intersection occurs when n = 2k in the Ix

interval, and n = 2k + 1 in the Ix+3 interval.

Case 6. x = 9k + 1. Then r = 5. Let t = (4k)/(18k + 5). Then
||dt|| ≥ (6k)/(18k + 5) for all d ∈ D. Thus κ(D) ≥ (6k)/(18k + 5).

The proof for κ(D) ≤ (6k)/(18k + 5) is similar to the proof of Case 4 in
Theorem 11. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(5/2)] =

{4k}. This single point of intersection occurs when n = 2k − 1 in the Ix

interval, and n = 2k in the Ix+3 interval.

Case 7. x = 9k + 6. Then r = 6. Let t = (2k + 3)/(9k + 12). Then
||dt|| ≥ (3k + 3)/(9k + 12) for all d ∈ D. Thus κ(D) ≥ (k + 1)/(3k + 4).
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By Theorem 2 with M = {3, x, x + 3} with M = {3, x, x + 3} = {3, 9t +
6, 9t + 9}, which can be reduced to M ′ = {1, 3t + 2, 3t + 3}, we get µ(M) =
κ(M) = (k + 1)/(3k + 4). Because M ⊆ D, so κ(D) ≤ µ(D) ≤ µ(M) ≤
κ(M) = (k + 1)/(3k + 4).

Case 8. x = 9k + 11. Then r = 7. Let t = (2k + 4)/(9k + 17). Then
||dt|| ≥ (3k + 5)/(9k + 17) for all d ∈ D. Thus κ(D) ≥ (3k + 5)/(9k + 17).

The proof for the other direction is similar to the proof of Case 4 in
Theorem 11. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(17/2)] =

{2k + 4}. This single point of intersection occurs when n = 2k + 2 in the Ix

interval, and n = 2k + 3 in the Ix+3 interval.

Case 9. x = 9k + 7. Then r = 8. Let t = (2k + 3)/(9k + 13). Then
||dt|| ≥ (3k + 4)/(9k + 13) for all d ∈ D. Thus κ(D) ≥ (3k + 4)/(9k + 13).

By Theorem 2 with M = {3, x, x + 3} = {3, 9t + 7, 9t + 10}, we get
κ(M) = (3k + 4)/(9k + 13). Because M ⊆ D, so κ(D) ≤ µ(D) ≤ µ(M) =
κ(M) = (3k + 4)/(9k + 13).

Corollary 13. Let D = {2, 3, x, y} where y ∈ {x + 2, x + 3}. Then

lim
x→∞

κ(D) =
1

3
.

4 D = {2, 3, x, y} for y = x + 4, x + 5, x + 6

By similar proofs to the previous section, we obtain the following results.

Theorem 14. Let D = {2, 3, x, x + 4}, x ≥ 4. Assume (x + 4) = 5β + r
with 0 ≤ r ≤ 4. Then

κ(D) =























2β+r

x+7
if 0 ≤ r ≤ 1;

µ(D) = 2
5

if r = 2;

2β

x+2
if 3 ≤ r ≤ 4.

Proof. The case for r = 2 is from Lemma 6. The following table gives the
corresponding t, κ(D), and the n values of Ix and Ix+4 where the single
intersection point occurs.
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x r t n in Ix n in Ix+4 κ(D)
5k + 4 3 (k + 1)/(5k + 6) k k + 1 (2k + 2)/(5k + 6)
5k + 5 4 (k + 1)/(5k + 7) k k + 1 (2k + 2)/(5k + 7)
5k + 6 0 (k + 3)/(5k + 13) k + 1 k + 2 (2k + 4)/(5k + 13)
5k + 7 1 (k + 3)/(5k + 14) k + 1 k + 2 (2k + 5)/(5k + 14)
5k + 8 2 1/5 2/5

Theorem 15. Let D = {2, 3, x, x + 5}, x ≥ 4. Assume (x + 3) = 5β + r
with 0 ≤ r ≤ 4. Then

κ(D) =























µ(D) = 2
5

if 0 ≤ r ≤ 1;

2β

x+2
if 2 ≤ r ≤ 3;

2β+1
x+3

if r = 4.

Proof. The cases for r = 0, 1 are by Lemma 6. The following table gives
the corresponding t, κ(D), and the n values of Ix and Ix+5 where the single
intersection point occurs.

x r t n in Ix n in Ix+5 κ(D)
5k + 4 2 (k + 1)/(5k + 6) k + 1 k + 1 (2k + 2)/(5k + 6)
5k + 5 3 (k + 1)/(5k + 7) k + 1 k + 1 (2k + 2)/(5k + 7)
5k + 6 4 (k + 2)/(5k + 9) k + 1 k + 2 (2k + 3)/(5k + 9)
5k + 7 0 1/5 2/5
5k + 8 1 1/5 2/5

Theorem 16. Let D = {2, 3, x, x + 6}, x ≥ 4. Assume (x + 8) = 5β + r
with 0 ≤ r ≤ 4. Then

κ(D) =







































µ(D) = 2
7

if x = 5;

µ(D) = 2
5

if r = 0;

2β

x+8
if 1 ≤ r ≤ 3 and x 6= 5;

2β+1
x+3

if r = 4.
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Proof. Assume x = 5. That is D = {2, 3, 5, 11}. Letting t = 1/7 we get
||td|| ≥ 2/7 for every d ∈ D. Hence, κ(D) ≥ 2/7. On the other hand, by
Theorem 2, µ({2, 3, 5}) = 2/7. Therefore, by (2), we have κ(D) ≤ µ(D) ≤
2/7.

The case for r = 0 is from Lemma 6. The following table gives the
corresponding t, κ(D), and the n values of Ix and Ix+6 where the single
intersection point occurs.

x r t n in Ix n in Ix+6 κ(D)
5k + 4 2 (k + 2)/(5k + 12) k k + 1 (2k + 4)/(5k + 12)
5k + 5 3 (k + 2)/(5k + 13) k k + 1 (2k + 4)/(5k + 13)
5k + 6 4 (k + 2)/(5k + 9) k + 1 k + 2 (2k + 3)/(5k + 9)
5k + 7 0 1/5 2/5
5k + 8 1 (k + 3)/(5k + 16) k + 1 k + 2 (2k + 6)/(5k + 16)

Corollary 17. Let D = {2, 3, x, y} where y ∈ {x + 4, x + 5, x + 6}. Then

lim
x→∞

κ(D) =
2

5
.

Concluding remark and future study. Similar to Corollary 9, one can
obtain sets D′ that are extensions of the sets D studied in this article, D ⊂ D′,
such that κ(D) = κ(D′). In addition, the methods used in this article can
be applied to other sets D = {2, 3, x, x + c} with c ≥ 7. For a fixed c,
preliminary results we obtained thus far indicate that the values of κ(D)
might be inconsistent for the first finite terms, while after a certain threshold,
they seem to be more consistent (that is, most likely it can be described by
a single formula). Thus, we would like to investigate whether the conclusion
of Corollary 17 holds for all D = {2, 3, x, y}, x < y, where y 6= x + 2, x + 3?
In a broader sense, it is interesting to further study the asymptotic behavior
of κ(D) for sets D containing 2 and 3, and identify any dominating factors
for such behavior.
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[10] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring prime distance
graphs, Graphs and Combinatorics, 6 (1990) 17 – 32.

[11] S. Gupta, Sets of Integers with Missing Differences, J. Combin. Th. (A)
89, (2000) 55–69.

[12] N. M. Haralambis, Sets of integers with missing differences, J. Combin.
Th. (A), 23 (1977) 22 – 33.

[13] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs,
Disc. Math., 191 (1998) 113 – 123.

[14] D. Liu, From Rainbow to the Lonely Runner: A survey on coloring pa-
rameters of distance graphs, Taiwanese J. Math., 12 (2008) 851 – 871.

[15] D. Liu and A. Sutedja, Chromatic Number of Distance Graphs Generated
by the Sets {2, 3, x, y}, J. of Combin. Optimization, 25 (2013), 680 – 693.

14



[16] D. Liu and X. Zhu, Fractional chromatic number and circular chromatic
number for distance graphs with large clique size, J. Graph Theory, 47
(2004) 129 – 146.

[17] J. Rabinowitz and V. Proulx, An asymptotic approach to the channel
assignment problem, SIAM J. Alg. Disc. Methods, 6 (1985), 507–518.

[18] M. Voigt and H. Walther, Chromatic number of prime distance graphs,
Discrete Appl. Math., 51 (1994) 197 – 209.

[19] M. Voigt and H. Walther, On the chromatic number of special distance
graphs, Disc. Math., 97 (1991) 395 – 397.

[20] J. M. Wills, Zwei Sätze über inhomogene diophantische appromixation
von irrationlzahlen, Monatsch. Math., 71 (1967) 263 – 269.

[21] X. Zhu, Circular chromatic number: A survey, Discrete Mathematics,
229 (2001) 371 – 410.

15


