Study of $\kappa(D)$ for $D=\{2,3, x, y\}$

Daniel Collister and Daphne Der-Fen Liu Department of Mathematics California State University Los Angeles

Emails: dliu@calstatela.edu and jee.rob@gmail.com
March 14, 2015

Abstract

Let D be a set of positive integers. The kappa value of D, denoted by $\kappa(D)$, is the parameter involved in the so called "lonely runner conjecture." Let x, y be positive integers, we investigate the kappa values for the family of sets $D=\{2,3, x, y\}$. For a fixed positive integer $x>3$, the exact values of $\kappa(D)$ are determined for $y=x+i$, $1 \leq i \leq 6$. These results lead to some asymptotic behavior of $\kappa(D)$ for $D=\{2,3, x, y\}$.

1 Introduction

Let D be a set of positive integers. For any real number x, let $\|x\|$ denote the minimum distance from x to an integer, that is, $\|x\|=\min \{\lceil x\rceil-x, x-\lfloor x\rfloor\}$. For any real t, denote $\|t D\|$ the smallest value $\|t d\|$ among all $d \in D$. The kappa value of D, denoted by $\kappa(D)$, is the supremum of $\|t D\|$ among all real t. That is,

$$
\kappa(D):=\sup \{\alpha:\|t D\| \geq \alpha \text { for some } t \in \Re\}
$$

Wills [20] conjectured that $\kappa(D) \geq 1 /(|D|+1)$ is true for all finite sets D. This conjecture is also known as the lonely runner conjecture by Bienia et al. [2]. Suppose m runners run laps on a circular track of unit circumference.

[^0]Each runner maintains a constant speed, and the speeds of all the runners are distinct. A runner is called lonely if the distance on the circular track between him or her and every other runner is at least $1 / m$. Equivalently, the conjecture asserts that for each runner, there is some time t when he or she becomes lonely. The conjecture has been proved true for $|D| \leq 6$ (cf. $[1,3,6,7])$, and remains open for $|D| \geq 7$.

The parameter $\kappa(D)$ is closely related to another parameter of D called the "density of integral sequences with missing differences." For a set D of positive integers, a sequence S of non-negative integers is called a D-sequence if $|x-y| \notin D$ for any $x, y \in S$. Denote $S(n)$ as $|S \cap\{0,1,2, \cdots, n-1\}|$. The upper density $\bar{\delta}(S)$ and the lower density $\underline{\delta}(S)$ of S are defined, respectively, by $\bar{\delta}(S)=\varlimsup_{n \rightarrow \infty} S(n) / n$ and $\underline{\delta}(S)=\underline{\lim }_{n \rightarrow \infty} S(n) / n$. We say S has density $\delta(S)$ if $\bar{\delta}(S)=\underline{\delta}(S)=\delta(S)$. The parameter of interest is the density of D, $\mu(D)$, defined by

$$
\mu(D):=\sup \{\delta(S): S \text { is a } D \text {-sequence }\}
$$

It is known that for any set D (cf. [4]):

$$
\begin{equation*}
\mu(D) \geq \kappa(D) \tag{1}
\end{equation*}
$$

For two-element sets $D=\{a, b\}$, Cantor and Gordon [4] proved that $\kappa(D)=\mu(D)=\frac{\left\lfloor\frac{a+b}{2}\right\rfloor}{a+b}$. For 3-element sets D, if $D=\{a, b, a+b\}$ it was proved that $\kappa(D)=\mu(D)$ and the exact values were determined (see Theorem 2 below). For the general case $D=\{i, j, k\}$, various lower bounds of $\kappa(D)$ were given by Gupta [11], in which the values of $\mu(D)$ were also studied. In addition, among other results it was shown in [11] that if D is an arithmetic sequence then $\kappa(D)=\mu(D)$ and the value was determined.

The parameters $\kappa(D)$ and $\mu(D)$ are closely related to coloring parameters of distance graphs. Let D be a set of positive integers. The distance graph generated by D, denoted as $G(\mathbb{Z}, D)$, has all integers \mathbb{Z} as the vertex set. Two vertices are adjacent whenever their absolute value difference falls in D. The chromatic number (minimum number of colors in a proper vertex-coloring) of the distance graph generated by D is denoted by $\chi(D)$. It is known that $\chi(D) \leq\lceil 1 / \kappa(D)\rceil$ for any set D (cf. [21]).

The fractional chromatic number of a graph G, denoted by $\chi_{f}(G)$, is the minimum ratio $m / n\left(m, n \in \mathbb{Z}^{+}\right)$of an (m / n)-coloring, where an (m / n) coloring is a function on $V(G)$ to n-element subsets of $[m]=\{1,2, \cdots, m\}$
such that if $u v \in E(G)$ then $f(u) \cap f(v)=\varnothing$. It is known that for any graph $G, \chi_{f}(G) \leq \chi(G)$ (cf. [21]).

Denote the fractional chromatic number of $G(\mathbb{Z}, D)$ by $\chi_{f}(D)$. Chang et al. [5] proved that for any set of positive integers D, it holds that $\chi_{f}(D)=$ $1 / \mu(D)$. Together with (1) we obtain

$$
\begin{equation*}
\frac{1}{\mu(D)}=\chi_{f}(D) \leq \chi(D) \leq\left\lceil\frac{1}{\kappa(D)}\right\rceil \tag{2}
\end{equation*}
$$

The chromatic number of distance graphs $G(\mathbb{Z}, D)$ with $D=\{2,3, x, y\}$ was studied by several authors. For prime numbers x and y, the values of $\chi(D)$ for this family were first studied by Eggleton, Erdős and Skilton [10] and later on completely solved by Voigt and Walther [18]. For general values of x and y, Kemnitz and Kolberg [13] and Voigt and Walther [19] determined $\chi(D)$ for some values of x and y. This problem was completely solved for all values of x and y by Liu and Setudja [15], in which $\kappa(D)$ was utilized as one of the main tools. In particular, it was proved in [15] that $\kappa(D) \geq 1 / 3$ for many sets in the form $D=\{2,3, x, y\}$. By (2), for those sets it holds that $\chi(D)=3$.

In this article we further investigate those previously established lower bounds of $\kappa(D)$ for the family of sets $D=\{2,3, x, y\}$. In particular, we determine the exact values of $\kappa(D)$ for $D=\{2,3, x, y\}$ with $|x-y| \leq 6$. Furthermore, for some cases it holds that $\kappa(D)=\mu(D)$. Our results also lead to asymptotic behavior of $\kappa(D)$.

2 Preliminaries

We introduce terminologies and known results that will be used to determine the exact values of $\kappa(D)$. It is easy to see that if the elements of D have a common factor r, then $\kappa(D)=\kappa\left(D^{\prime}\right)$ and $\mu(D)=\mu\left(D^{\prime}\right)$, where $D^{\prime}=D / r=$ $\{d / r: d \in D\}$. Thus, throughout the article we assume that $\operatorname{gcd}(D)=1$, unless it is indicated otherwise.

The following proposition is derived directly from definitions.
Proposition 1. If $D \subseteq D^{\prime}$ then $\kappa(D) \geq \kappa\left(D^{\prime}\right)$ and $\mu(D) \geq \mu\left(D^{\prime}\right)$.
The next result was established by Liu and Zhu [16], after confirming a conjecture of Rabinowitz and Proulx [17].

Theorem 2. [16] Suppose $M=\{a, b, a+b\}$ for some positive integers a and b with $\operatorname{gcd}(a, b)=1$. Then

$$
\mu(M)=\kappa(M)=\max \left\{\frac{\left\lfloor\frac{2 b+a}{3}\right\rfloor}{2 b+a}, \frac{\left\lfloor\frac{2 a+b}{3}\right\rfloor}{2 a+b}\right\} .
$$

By Proposition 1, if $\{a, b, a+b\} \subseteq D$ for some a and b, then Theorem 2 gives an upper bound for $\kappa(D)$.

For a D-sequence S, denote $S[n]=|\{0,1,2, \ldots, n\} \cap S|$. The next result was proved by Haralambis [12].

Lemma 3. [12] Let D be a set of positive integers, and let $\alpha \in(0,1]$. If for every D-sequence S with $0 \in S$ there exists a positive integer n such that $\frac{S[n]}{n+1} \leq \alpha$, then $\mu(D) \leq \alpha$.

For a given D-sequence S, we shall write elements of S in an increasing order, $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$ with $s_{0}<s_{1}<s_{2}<\ldots$, and denote its difference sequence by

$$
\Delta(S)=\left\{\delta_{0}, \delta_{1}, \delta_{2}, \ldots\right\} \text { where } \delta_{i}=s_{i+1}-s_{i}
$$

We call a subsequence of consecutive terms in $\Delta(S), \delta_{a}, \delta_{a+1}, \ldots, \delta_{a+b-1}$, generates a periodic interval of k copies, $k \geq 1$, if $\delta_{j(a+b)+i}=\delta_{a+i}$ for all $0 \leq i \leq b-1,1 \leq j \leq k-1$. We denote such a periodic subsequence of $\Delta(S)$ by $\left(\delta_{a}, \delta_{a+1}, \ldots, \delta_{a+b-1}\right)^{k}$. If the periodic interval repeats infinitely, then we simply denote it by $\left(\delta_{a}, \delta_{a+1}, \ldots, \delta_{a+b-1}\right)$. If $\Delta(S)$ is infinite periodic, except the first finite number of terms, with the periodic interval $\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, then the density of S is $k /\left(\sum_{i=1}^{k} t_{i}\right)$.

Proposition 4. A sequence of non-negative integers S is a D-sequence if and only if $\sum_{i=a}^{b} \delta_{i} \notin D$ for every $a \leq b$.

Proposition 5. Assume $2,3 \in D$. If S is a D-sequence, then $\delta_{i}+\delta_{i+1} \geq 5$ for all i. The equality holds only when $\left\{\delta_{i}, \delta_{i+1}\right\}=\{1,4\}$. Consequently, $\mu(D) \leq 2 / 5$.

Lemma 6. Let $D=\{2,3\} \cup A$. Then $\kappa(D)=2 / 5$ if and only if $A \subseteq\{x$: $x \equiv 2,3(\bmod 5)\}$. Furthermore, if $\kappa(D)=2 / 5$, then $\mu(D)=2 / 5$.

Proof. Let $D=\{2,3\} \cup A$. Assume $A \subseteq\{x: x \equiv 2,3(\bmod 5)\}$. Let $t=1 / 5$. Then $\|t d\| \geq 2 / 5$ for all $d \in D$. Hence $\kappa(D) \geq 2 / 5$. On the other hand, the density of the infinite periodic D-sequence S with $\Delta(S)=(1,4)$ is $2 / 5$. By Proposition 5, this is an optimal D-sequence. Hence, $\mu(D)=2 / 5$, implying $\kappa(D)=2 / 5$.

Conversely, assume $\kappa(D)=2 / 5$. Then $\mu(D) \geq 2 / 5$. By Proposition 5, $\mu(D)=2 / 5$. By Proposition 4, this implies that if $d \in D$, then $d \not \equiv 0,1,4$ $(\bmod 5)$. Thus the result follows.

Note, in $D=\{2,3, x, y\}$, if $x=1$, then it is known [16] and easy to see that $\mu(D)=\kappa(D)=1 / 4$ if y is not a multiple of 4 (with $\Delta(S)=(4)$); otherwise $y=4 k$ and $\mu(D)=\kappa(D)=k /(4 k+1)$ (with $\Delta(S)=\left((4)^{k-1} 5\right)$). Hence throughout the article we assume $x>3$.

Another method we will utilize is an alternative definition of $\kappa(D)$. In this definition, for a projected lower bound α of $\kappa(D)$, for each element z in D the valid time t for z to achieve α is expressed as a union of disjoint intervals. Let $\alpha \in\left(0, \frac{1}{2}\right)$. For positive integer i, define $I_{i}(\alpha)=\{t \in(0,1):\|t i\| \geq \alpha\}$. Equivalently,

$$
I_{i}(\alpha)=\{t: n+\alpha \leq t i \leq n+1-\alpha, 0 \leq n \leq i-1\} .
$$

That is, I_{i} consists of intervals of reals with length $(1-2 \alpha) / i$ and centered at $(2 n+1) /(2 i), n=0,1, \ldots, i-1$. By definition, $\kappa(D) \geq \alpha$ if and only if $\bigcap_{i \in D} I_{i}(\alpha) \neq \emptyset$. Thus,

$$
\kappa(D)=\sup \left\{\alpha \in\left(0, \frac{1}{2}\right): \bigcap_{i \in D} I_{i}(\alpha) \neq \varnothing\right\} .
$$

Observe that if $\bigcap_{i \in D} I_{i}(\alpha)$ consists of only isolated points, then $\kappa(D) \leq \alpha$. Hence, we have the following:

Proposition 7. For a set $D, \kappa(D) \leq d / c$ if $\bigcap_{i \in D} I_{i}$ is a set of isolated points, where

$$
I_{i}=\bigcup_{n=0}^{i-1}\left[\frac{d+c n}{i}, \frac{c-d+c n}{i}\right] .
$$

$3 D=\{2,3, x, y\}$ for $y=x+1, x+2, x+3$
Theorem 8. Let $D=\{2,3, x, x+1\}, x \geq 4$. Then

$$
\kappa(D)=\mu(D)= \begin{cases}\frac{2\left\lfloor\frac{x+3}{5}\right\rfloor+1}{x+3} & \text { if } x \equiv 1(\bmod 5) ; \\ \frac{2\left\lfloor\frac{x+3}{5}\right\rfloor}{x+3} & \text { otherwise } .\end{cases}
$$

Proof. We prove the following cases.
Case 1. $\boldsymbol{x}=\mathbf{5} \boldsymbol{k}+\mathbf{2}$. The result follows by Lemma 6 .
Case 2. $\boldsymbol{x}=\mathbf{5} \boldsymbol{k}+\mathbf{3}$. Let $t=(k+1) /(5 k+6)$. Then $\|d t\| \geq(2 k+2) /(5 k+6)$ for every $d \in D$. Hence $\kappa(D) \geq(2 k+2) /(5 k+6)$.

By (1) it remains to show that $\mu(D) \leq(2 k+2) /(5 k+6)$. Assume to the contrary that $\mu(D)>(2 k+2) /(5 k+6)$. By Lemma 3, there exists a D-sequence S with $S[n] /(n+1)>(2 k+2) /(5 k+6)$ for all $n \geq 0$. This implies, for instance, $S[0] \geq 1$, so $s_{0}=0 ; S[2] \geq 2$, so $s_{1}=1$ (as $2,3 \in D$); $S[5] \geq 3$, so $s_{3}=5$. Moreover, $S[5 k+5] \geq 2 k+3$. By Proposition 5 , it must be $\left(\delta_{0}, \delta_{1}, \delta_{2}, \ldots, \delta_{2 k+1}\right)=(1,4,1,4, \ldots, 1,4)$. This implies $5 k+5 \in S$, which is impossible since $1 \in S$ and $5 k+4 \in D$. Therefore, $\mu(D)=\kappa(D)=$ $(2 k+2) /(5 k+6)$.
Case 3. $\boldsymbol{x}=\mathbf{5} \boldsymbol{k}+4$. Let $t=(k+1) /(5 k+7)$. Then $\|d t\| \geq(2 k+2) /(5 k+7)$ for all $d \in D$. Hence $\kappa(D) \geq(2 k+2) /(5 k+7)$.

By (1) it remains to show that $\mu(D) \leq(2 k+2) /(5 k+7)$. Assume to the contrary that $\mu(D)>(2 k+2) /(5 k+7)$. By Lemma 3 , there exists a D-sequence S with $S[n] /(n+1)>(2 k+2) /(5 k+7)$ for all $n \geq 0$. This implies, for instance, $S[0] \geq 1$, so $s_{0}=0 ; S[3] \geq 2$, so $s_{1}=1$ (as $2,3 \in D$); and $S[5 k+6] \geq 2 k+3$. By Proposition 5 , either $5 k+5$ or $5 k+6$ is an element in S. This is impossible since $0,1 \in S$ and $5 k+4,5 k+5 \in D$. Thus $\mu(D)=\kappa(D)=(2 k+2) /(5 k+7)$.
Case 4. $\boldsymbol{x}=\mathbf{5} \boldsymbol{k}+\mathbf{5}$. Let $t=(k+1) /(5 k+8)$. Then $\|d t\| \geq(2 k+2) /(5 k+8)$ for all $d \in D$. Hence $\kappa(D) \geq(2 k+2) /(5 k+8)$.

It remains to show $\mu(D) \leq(2 k+2) /(5 k+8)$. Assume to the contrary that $\mu(D)>(2 k+2) /(5 k+8)$. By Lemma 3, there exists a D-sequence S with $S[n] /(n+1)>(2 k+2) /(5 k+8)$ for all $n \geq 0$. Similar to the above, one has $0,1 \in S$ and $S[5 k+7] \geq 2 k+3$. This implies that one of $5 k+5$, $5 k+6$, or $5 k+7$ is an element in S, which is again impossible. Therefore, $\mu(D)=\kappa(D)=(2 k+2) /(5 k+8)$.

Case 5. $\boldsymbol{x}=\mathbf{5} \boldsymbol{k}+\mathbf{1}$. Let $t=(k+1) /(5 k+4)$. Then $\|d t\| \geq(2 k+1) /(5 k+4)$ for all $d \in D$. Hence $\kappa(D) \geq(2 k+1) /(5 k+4)$.

Now we show $\mu(D) \leq(2 k+1) /(5 k+4)$. Assume to the contrary that $\mu(D)>(2 k+1) /(5 k+4)$. By Lemma 3, $\left(s_{0}, s_{1}\right)=(0,1)$, and $S[5 k+3] \geq$ $2 k+2$. Because $S[5 k] \leq 2 k+1$, so $S \cap\{5 k+1,5 k+2,5 k+3\} \neq \emptyset$, which is impossible. Therefore, $\mu(D)=\kappa(D)=(2 k+1) /(5 k+4)$.

By the above proofs, one can extend the family of sets D to the following:
Corollary 9. Let $D=\{2,3, x, x+1\} \cup D^{\prime}$, where $D^{\prime} \subseteq\{y: y \equiv \pm 2, \pm 3$ $(\bmod (x+3))\}$. Then $\mu(D)=\kappa(D)=\mu(\{2,3, x, x+1\})$.

Corollary 10. Let $D=\{2,3, x, x+1\}$. Then

$$
\lim _{x \rightarrow \infty} \kappa(D)=\frac{2}{5}
$$

Theorem 11. Let $D=\{2,3, x, x+2\}, x \geq 4$. Assume $x+4=6 \beta+r$ with $0 \leq r \leq 5$. Then

$$
\kappa(D)= \begin{cases}\frac{\left\lfloor\frac{x+4}{3}\right\rfloor}{x+4} & \text { if } 0 \leq r \leq 2 \\ \frac{\left\lfloor\frac{2 x+1}{3}\right\rfloor}{2 x+2} & \text { if } 3 \leq r \leq 5\end{cases}
$$

Furthermore, $\kappa(D)=\mu(D)$ if $r \neq 3$.
Proof. We prove the following cases.
Case 1. $\boldsymbol{x}=6 \boldsymbol{k}+\mathbf{2}$. Then $r=0$. Let $t=1 / 6$. Then $\|d t\| \geq 1 / 3$ for all $d \in D$. Hence $\kappa(D) \geq 1 / 3$.

Now we prove $\mu(D) \leq 1 / 3$. Let $M^{\prime}=\{2, x, x+2\}=\{2,6 k+2,6 k+4\}$. By Theorem 2 with $M=\{1,3 k+1,3 k+2\}$, we obtain $\mu\left(M^{\prime}\right)=\mu(M)=1 / 3$. Because $M^{\prime} \subseteq D$, so $\mu(D) \leq \mu\left(M^{\prime}\right)=1 / 3$.

Case 2. $\boldsymbol{x}=\mathbf{6} \boldsymbol{k}+\mathbf{3}$. Then $r=1$. Let $t=(k+1) /(6 k+7)$. Then $\|d t\| \geq(2 k+2) /(6 k+7)$ for all $d \in D$. Hence $\kappa(D) \geq(2 k+2) /(6 k+7)$.

By Theorem 2 with $M=\{2, x, x+2\}=\{2,6 k+3,6 k+5\}$, we get $\mu(M)=$ $(2 k+2) /(6 k+7)$. Because $M \subseteq D$, so $\mu(D) \leq \mu(M)=(2 k+2) /(6 k+7)$. Thus, the result follows.

Case 3. $\boldsymbol{x}=\mathbf{6} \boldsymbol{k}+\mathbf{4}$. Then $r=2$. Let $t=(k+1) /(6 k+8)$. Then $\|d t\| \geq(2 k+2) /(6 k+8)$ for all $d \in D$. Hence $\kappa(D) \geq(2 k+2) /(6 k+8)$.

By Theorem 2 with $M=\{2, x, x+2\}=\{2,6 k+4,6 k+6\}$ which can be reduced to $M^{\prime}=\{1,3 k+2,3 k+3\}$, we obtain $\mu(M)=(k+1) /(3 k+4)$. Therefore, $\mu(D) \leq \mu(M)=(2 k+2) /(6 k+8)$. So the result follows.
Case 4. $\boldsymbol{x}=\mathbf{6} \boldsymbol{k}+\mathbf{5}$. Then $r=3$. Let $t=(2 k+3) /(12 k+12)$. Then $\|d t\| \geq(4 k+3) /(12 k+12)$ for all $d \in D$. Hence $\kappa(D) \geq(4 k+3) /(12 k+12)$.

By Proposition 7, it remains to show that $\bigcap_{i=2,3, x, x+2} I_{i}$ is a set of isolated points, where

$$
I_{i}=\bigcup_{n=0}^{i-1}\left[\frac{4 k+3+n(12 k+12)}{i}, \frac{8 k+9+n(12 k+12)}{i}\right] .
$$

Let $I=\bigcap_{i=2,3, x, x+2} I_{i}$. By symmetry it is enough to consider the interval $I \cap[0,(12 k+12) / 2]$. In the following we claim $I \cap[0,6 k+6]=\{2 k+3\}$. (Indeed, this single point is the numerator of the t value at the beginning of the proof.)

Note that $I_{2} \cap I_{3} \cap[0,6 k+6]=[(4 k+3) / 2,(8 k+9) / 3]$. Denote this interval by

$$
I_{2,3}=\left[\frac{4 k+3}{2}, \frac{8 k+9}{3}\right] .
$$

We then begin to investigate possible values of n for I_{x} and I_{x+2}, respectively, that will fall within $I_{2,3}$. First, we compare the I_{x} intervals with $I_{2,3}$. Recall

$$
I_{x}=\left[\frac{3+4 k+n(12+12 k)}{6 k+5}, \frac{8 k+9+n(12+12 k)}{6 k+5}\right], 0 \leq n \leq 6 k+4 .
$$

By calculation, the intervals of I_{x} that intersect with $I_{2,3}$ are those with $n \geq k$. Similarly, we compare I_{x+2} intervals with $I_{2,3}$. Recall

$$
I_{x+2}=\left[\frac{3+4 k+n(12+12 k)}{6 k+7}, \frac{8 k+9+n(12+12 k)}{6 k+7}\right], 0 \leq n \leq 6 k+6 .
$$

By calculation, the intervals of I_{x+2} that intersect with $I_{2,3}$ are those with $n \geq k+1$.

Next, we consider the intersection between intervals of I_{x} and I_{x+2}. Let $n=k+a$ for some $a \geq 0$ for the I_{x} interval, and let $n=k+a^{\prime}$ for some $a^{\prime} \geq 1$ for the I_{x+2} interval. By taking the common denominator of the I_{x} and I_{x+2} intervals we obtain the following numerators of those intervals:

$$
\text { for } I_{x}:\left[21+84 a+130 k+156 a k+180 k^{2}+72 a k^{2}+72 k^{3},\right.
$$

$$
\begin{gathered}
\left.63+84 a+194 k+156 a k+204 k^{2}+72 a k^{2}+72 k^{3}\right] \\
\text { for } I_{x+2}:\left[15+60 a^{\prime}+98 k+132 a^{\prime} k+156 k^{2}+72 a^{\prime} k^{2}+72 k^{3}\right. \\
\left.45+60 a^{\prime}+154 k+132 a^{\prime} k+180 k^{2}+72 a^{\prime} k^{2}+72 k^{3}\right]
\end{gathered}
$$

Using $a=a^{\prime}=1$, we get

$$
\begin{aligned}
& \text { for } I_{x}:\left[105+286 k+252 k^{2}+72 k^{3}, 147+350 k+276 k^{2}+72 k^{3}\right] \\
& \text { for } I_{x+2}:\left[75+230 k+228 k^{2}+72 k^{3}, 105+286 k+252 k^{2}+72 k^{3}\right] .
\end{aligned}
$$

Thus, there is a single point intersection for I_{x} and I_{x+2} when $a=a^{\prime}=1$, which is $\{2 k+3\}$. This single point intersection is also within the $I_{2,3}$ interval. Hence, $\{2 k+3\} \in I \cap[0,6 k+6]$.

In addition, through inspection it is clear that making $n=k$ (i.e. $a=0$) for the I_{x} interval and $n \geq k+1\left(a^{\prime} \geq 1\right)$ for the I_{x+2} interval removes I_{x} and I_{x+2} from intersecting one another. For all other cases, $a=1$ and $a^{\prime} \geq 2$, $a \geq 2$ and $a^{\prime}=1$, or $a, a^{\prime} \geq 2$, there will never be an intersection of intervals for all elements in D, either because the $I_{2,3}$ interval is too small or because the I_{x+2} elements become too big. Thus, $I \cap[0,6 k+6]=\{2 k+3\}$.
Case 5. $\boldsymbol{x}=\mathbf{6} \boldsymbol{k}+\mathbf{6}$. Then $r=4$. Let $t=(2 k+3) /(12 k+14)$. Then $\|d t\| \geq(4 k+4) /(12 k+14)$ for all $d \in D$. Hence $\kappa(D) \geq(4 k+4) /(12 k+14)$.

By Theorem 2 with $M=\{2, x, x+2\}=\{2,6 k+6,6 k+8\}$ which can be reduced to $M^{\prime}=\{1,3 k+3,3 k+4\}$, we get $\mu(M)=\kappa(M)=(2 k+2) /(6 k+7)$. Hence, $\mu(D) \leq \mu(M)=(2 k+2) /(6 k+7)$.
Case 6. $\boldsymbol{x}=\mathbf{6} \boldsymbol{k}+\mathbf{7}$. Then $r=5$. Let $t=(2 k+3) /(12 k+16)$. Then $\|d t\| \geq(4 k+5) /(12 k+16)$ for all $d \in D$. Hence $\kappa(D) \geq(4 k+5) /(12 k+16)$.

By Theorem 2 with $M=\{2, x, x+2\}=\{2,6 k+7,6 k+9\}$, we obtain $\mu(M)=\kappa(M)=(4 k+5) /(12 k+16)$. Therefore, $\mu(D) \leq(4 k+5) /(12 k+$ 16).

Theorem 12. Let $D=\{2,3, x, x+3\}, x \geq 4$. Assume $(2 x+3)=9 \beta+r$ with $0 \leq r \leq 8$. Then

$$
\kappa(D)= \begin{cases}\frac{3\left\lfloor\frac{2 x+3}{9}\right\rfloor}{2 x+3} & \text { if } 0 \leq r \leq 5 ; \\ \frac{\left\lfloor\frac{x+5}{3}\right\rfloor}{x+6} & \text { if } 6 \leq r \leq 8\end{cases}
$$

Furthermore, if $r=0,1,3,6,8$ then $\kappa(D)=\mu(D)$.

Proof. We prove the following cases:
Case 1. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{3}$. Then $r=0$. Let $t=2 / 9$. Then $\|d t\| \geq 1 / 3$ for all $d \in D$. Hence $\kappa(D) \geq(6 k+3) /(18 k+9)=1 / 3$.

By Theorem 2 with $M=\{3, x, x+3\}=\{3,9 k+3,9 k+6\}$, which can be reduced to $M^{\prime}=\{1,3 k+1,3 k+2\}$, resulting in $\mu(M)=\kappa(M)=1 / 3$. Because $M \subseteq D$, so $\mu(D)=\mu(M)=1 / 3$.
Case 2. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{8}$. Then $r=1$. Let $t=(4 k+4) /(18 k+19)$. Then $\|d t\| \geq(6 k+6) /(18 k+19)$ for all $d \in D$. Hence $\kappa(D) \geq(6 k+6) /(18 k+19)$.

By Theorem 2 with $M=\{3, x, x+3\}$, we get $\kappa(M)=(6 k+6) /(18 k+19)$.
Hence, $\mu(D) \leq \kappa(M)=(6 k+6) /(18 k+19)$.
Case 3. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{4}$. Then $r=2$. Let $t=(4 k+2) /(18 k+11)$. Then $\|d t\| \geq(6 k+3) /(18 k+11)$ for all $d \in D$. Thus, $\kappa(D) \geq(6 k+3) /(18 k+11)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I=\bigcap_{i=2,3, x, x+3} I_{i}$. By calculation we have $I \cap[0,9 k+(11 / 2)]=$ $\{4 k+2\}$. This single point of intersection occurs when $n=2 k$ in the I_{x} interval, and $n=2 k+1$ in the I_{x+3} interval.
Case 4. $\boldsymbol{x}=\mathbf{9 k}$. Then $r=3$. Let $t=4 k /(18 k+3)$. Then $\|d t\| \geq$ $(6 k) /(18 k+3)$ for all $d \in D$. Thus $\kappa(D) \geq(2 k) /(6 k+1)$.

By Theorem 2 with $M=\{3, x, x+3\}=\{3,9 k, 9 k+3\}, \mu(M)=\kappa(M)=$ $(2 k) /(6 k+1)$. Hence, the result follows.
Case 5. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{5}$. Then $r=4$. Let $t=(4 k+2) /(18 k+13)$. Then $\|d t\| \geq(6 k+3) /(18 k+13)$ for all $d \in D$. Thus $\kappa(D) \geq(6 k+3) /(18 k+13)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I=\bigcap_{i=2,3, x, x+3} I_{i}$. By calculation we have $I \cap[0,9 k+(13 / 2)]=$ $\{4 k+2\}$. This single point of intersection occurs when $n=2 k$ in the I_{x} interval, and $n=2 k+1$ in the I_{x+3} interval.

Case 6. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{1}$. Then $r=5$. Let $t=(4 k) /(18 k+5)$. Then $\|d t\| \geq(6 k) /(18 k+5)$ for all $d \in D$. Thus $\kappa(D) \geq(6 k) /(18 k+5)$.

The proof for $\kappa(D) \leq(6 k) /(18 k+5)$ is similar to the proof of Case 4 in Theorem 11. Let $I=\bigcap_{i=2,3, x, x+3} I_{i}$. By calculation we have $I \cap[0,9 k+(5 / 2)]=$ $\{4 k\}$. This single point of intersection occurs when $n=2 k-1$ in the I_{x} interval, and $n=2 k$ in the I_{x+3} interval.

Case 7. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{6}$. Then $r=6$. Let $t=(2 k+3) /(9 k+12)$. Then $\|d t\| \geq(3 k+3) /(9 k+12)$ for all $d \in D$. Thus $\kappa(D) \geq(k+1) /(3 k+4)$.

By Theorem 2 with $M=\{3, x, x+3\}$ with $M=\{3, x, x+3\}=\{3,9 t+$ $6,9 t+9\}$, which can be reduced to $M^{\prime}=\{1,3 t+2,3 t+3\}$, we get $\mu(M)=$ $\kappa(M)=(k+1) /(3 k+4)$. Because $M \subseteq D$, so $\kappa(D) \leq \mu(D) \leq \mu(M) \leq$ $\kappa(M)=(k+1) /(3 k+4)$.
Case 8. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{1 1}$. Then $r=7$. Let $t=(2 k+4) /(9 k+17)$. Then $\|d t\| \geq(3 k+5) /(9 k+17)$ for all $d \in D$. Thus $\kappa(D) \geq(3 k+5) /(9 k+17)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I=\bigcap_{i=2,3, x, x+3} I_{i}$. By calculation we have $I \cap[0,9 k+(17 / 2)]=$ $\{2 k+4\}$. This single point of intersection occurs when $n=2 k+2$ in the I_{x} interval, and $n=2 k+3$ in the I_{x+3} interval.

Case 9. $\boldsymbol{x}=\mathbf{9} \boldsymbol{k}+\mathbf{7}$. Then $r=8$. Let $t=(2 k+3) /(9 k+13)$. Then $\|d t\| \geq(3 k+4) /(9 k+13)$ for all $d \in D$. Thus $\kappa(D) \geq(3 k+4) /(9 k+13)$.

By Theorem 2 with $M=\{3, x, x+3\}=\{3,9 t+7,9 t+10\}$, we get $\kappa(M)=(3 k+4) /(9 k+13)$. Because $M \subseteq D$, so $\kappa(D) \leq \mu(D) \leq \mu(M)=$ $\kappa(M)=(3 k+4) /(9 k+13)$.

Corollary 13. Let $D=\{2,3, x, y\}$ where $y \in\{x+2, x+3\}$. Then

$$
\lim _{x \rightarrow \infty} \kappa(D)=\frac{1}{3}
$$

$4 D=\{2,3, x, y\}$ for $y=x+4, x+5, x+6$

By similar proofs to the previous section, we obtain the following results.
Theorem 14. Let $D=\{2,3, x, x+4\}, x \geq 4$. Assume $(x+4)=5 \beta+r$ with $0 \leq r \leq 4$. Then

$$
\kappa(D)= \begin{cases}\frac{2 \beta+r}{x+7} & \text { if } 0 \leq r \leq 1 \\ \mu(D)=\frac{2}{5} & \text { if } r=2 \\ \frac{2 \beta}{x+2} & \text { if } 3 \leq r \leq 4\end{cases}
$$

Proof. The case for $r=2$ is from Lemma 6. The following table gives the corresponding $t, \kappa(D)$, and the n values of I_{x} and I_{x+4} where the single intersection point occurs.

x	r	t	n in I_{x}	n in I_{x+4}	$\kappa(D)$
$5 k+4$	3	$(k+1) /(5 k+6)$	k	$k+1$	$(2 k+2) /(5 k+6)$
$5 k+5$	4	$(k+1) /(5 k+7)$	k	$k+1$	$(2 k+2) /(5 k+7)$
$5 k+6$	0	$(k+3) /(5 k+13)$	$k+1$	$k+2$	$(2 k+4) /(5 k+13)$
$5 k+7$	1	$(k+3) /(5 k+14)$	$k+1$	$k+2$	$(2 k+5) /(5 k+14)$
$5 k+8$	2	$1 / 5$			$2 / 5$

Theorem 15. Let $D=\{2,3, x, x+5\}, x \geq 4$. Assume $(x+3)=5 \beta+r$ with $0 \leq r \leq 4$. Then

$$
\kappa(D)= \begin{cases}\mu(D)=\frac{2}{5} & \text { if } 0 \leq r \leq 1 \\ \frac{2 \beta}{x+2} & \text { if } 2 \leq r \leq 3 \\ \frac{2 \beta+1}{x+3} & \text { if } r=4\end{cases}
$$

Proof. The cases for $r=0,1$ are by Lemma 6. The following table gives the corresponding $t, \kappa(D)$, and the n values of I_{x} and I_{x+5} where the single intersection point occurs.

x	r	t	n in I_{x}	n in I_{x+5}	$\kappa(D)$
$5 k+4$	2	$(k+1) /(5 k+6)$	$k+1$	$k+1$	$(2 k+2) /(5 k+6)$
$5 k+5$	3	$(k+1) /(5 k+7)$	$k+1$	$k+1$	$(2 k+2) /(5 k+7)$
$5 k+6$	4	$(k+2) /(5 k+9)$	$k+1$	$k+2$	$(2 k+3) /(5 k+9)$
$5 k+7$	0	$1 / 5$			$2 / 5$
$5 k+8$	1	$1 / 5$			$2 / 5$

Theorem 16. Let $D=\{2,3, x, x+6\}, x \geq 4$. Assume $(x+8)=5 \beta+r$ with $0 \leq r \leq 4$. Then

$$
\kappa(D)= \begin{cases}\mu(D)=\frac{2}{7} & \text { if } x=5 \\ \mu(D)=\frac{2}{5} & \text { if } r=0 \\ \frac{2 \beta}{x+8} & \text { if } 1 \leq r \leq 3 \text { and } x \neq 5 \\ \frac{2 \beta+1}{x+3} & \text { if } r=4\end{cases}
$$

Proof. Assume $x=5$. That is $D=\{2,3,5,11\}$. Letting $t=1 / 7$ we get $\|t d\| \geq 2 / 7$ for every $d \in D$. Hence, $\kappa(D) \geq 2 / 7$. On the other hand, by Theorem 2, $\mu(\{2,3,5\})=2 / 7$. Therefore, by (2), we have $\kappa(D) \leq \mu(D) \leq$ 2/7.

The case for $r=0$ is from Lemma 6. The following table gives the corresponding $t, \kappa(D)$, and the n values of I_{x} and I_{x+6} where the single intersection point occurs.

x	r	t	n in I_{x}	n in I_{x+6}	$\kappa(D)$
$5 k+4$	2	$(k+2) /(5 k+12)$	k	$k+1$	$(2 k+4) /(5 k+12)$
$5 k+5$	3	$(k+2) /(5 k+13)$	k	$k+1$	$(2 k+4) /(5 k+13)$
$5 k+6$	4	$(k+2) /(5 k+9)$	$k+1$	$k+2$	$(2 k+3) /(5 k+9)$
$5 k+7$	0	$1 / 5$			$2 / 5$
$5 k+8$	1	$(k+3) /(5 k+16)$	$k+1$	$k+2$	$(2 k+6) /(5 k+16)$

Corollary 17. Let $D=\{2,3, x, y\}$ where $y \in\{x+4, x+5, x+6\}$. Then

$$
\lim _{x \rightarrow \infty} \kappa(D)=\frac{2}{5}
$$

Concluding remark and future study. Similar to Corollary 9, one can obtain sets D^{\prime} that are extensions of the sets D studied in this article, $D \subset D^{\prime}$, such that $\kappa(D)=\kappa\left(D^{\prime}\right)$. In addition, the methods used in this article can be applied to other sets $D=\{2,3, x, x+c\}$ with $c \geq 7$. For a fixed c, preliminary results we obtained thus far indicate that the values of $\kappa(D)$ might be inconsistent for the first finite terms, while after a certain threshold, they seem to be more consistent (that is, most likely it can be described by a single formula). Thus, we would like to investigate whether the conclusion of Corollary 17 holds for all $D=\{2,3, x, y\}, x<y$, where $y \neq x+2, x+3$? In a broader sense, it is interesting to further study the asymptotic behavior of $\kappa(D)$ for sets D containing 2 and 3 , and identify any dominating factors for such behavior.

References

[1] J. Barajas and O. Serra, The lonely runner with seven runners, The Electronic Journal of Combinatorics, 15 (2008), \#R48.
[2] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view obstructions, and the lonely runner, J. Combin. Theory (B), 72 (1998) 1-9.
[3] T. Bohman, R. Holzman, D. Kleitman, Six lonely runners, Electronic J. Combinatorics, 8 (2001), Research Paper 3, 49 pp.
[4] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Th. (A), 14 (1973) 281 - 287.
[5] G. Chang, D. Liu and X. Zhu, Distance graphs and T-coloring, J. Combin. Th. (B), 75 (1999) $159-169$.
[6] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A, 16 (1974) 1-11.
[7] T. W. Cusick and C. Pomerance, View-obstruction problems, III, J. Number Th., 19 (1984), 131-139.
[8] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring the real line, J. Combin. Theory (B), 39 (1985) $86-100$.
[9] R. B. Eggleton, P. Erdős and D. K. Skilton, Research problem 77, Disc. Math., 58 (1986) 323.
[10] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring prime distance graphs, Graphs and Combinatorics, 6 (1990) $17-32$.
[11] S. Gupta, Sets of Integers with Missing Differences, J. Combin. Th. (A) 89, (2000) 55-69.
[12] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Th. (A), 23 (1977) $22-33$.
[13] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Disc. Math., 191 (1998) 113 - 123.
[14] D. Liu, From Rainbow to the Lonely Runner: A survey on coloring parameters of distance graphs, Taiwanese J. Math., 12 (2008) 851 - 871.
[15] D. Liu and A. Sutedja, Chromatic Number of Distance Graphs Generated by the Sets $\{2,3, x, y\}$, J. of Combin. Optimization, 25 (2013), 680-693.
[16] D. Liu and X. Zhu, Fractional chromatic number and circular chromatic number for distance graphs with large clique size, J. Graph Theory, 47 (2004) $129-146$.
[17] J. Rabinowitz and V. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods, 6 (1985), 507-518.
[18] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math., 51 (1994) 197 - 209.
[19] M. Voigt and H. Walther, On the chromatic number of special distance graphs, Disc. Math., 97 (1991) $395-397$.
[20] J. M. Wills, Zwei Sätze über inhomogene diophantische appromixation von irrationlzahlen, Monatsch. Math., 71 (1967) 263 - 269.
[21] X. Zhu, Circular chromatic number: A survey, Discrete Mathematics, 229 (2001) 371 - 410.

[^0]: *Supported in part by the National Science Foundation under grant MS-1247679.

