Study of
$$\kappa(D)$$
 for $D = \{2, 3, x, y\}^*$

Daniel Collister and Daphne Der-Fen Liu Department of Mathematics California State University Los Angeles Emails: dliu@calstatela.edu and jee.rob@gmail.com

March 14, 2015

Abstract

Let D be a set of positive integers. The kappa value of D, denoted by $\kappa(D)$, is the parameter involved in the so called "lonely runner conjecture." Let x, y be positive integers, we investigate the kappa values for the family of sets $D = \{2, 3, x, y\}$. For a fixed positive integer x > 3, the exact values of $\kappa(D)$ are determined for y = x + i, $1 \le i \le 6$. These results lead to some asymptotic behavior of $\kappa(D)$ for $D = \{2, 3, x, y\}$.

1 Introduction

Let D be a set of positive integers. For any real number x, let ||x|| denote the minimum distance from x to an integer, that is, $||x|| = \min\{\lceil x \rceil - x, x - \lfloor x \rfloor\}$. For any real t, denote ||tD|| the smallest value ||td|| among all $d \in D$. The kappa value of D, denoted by $\kappa(D)$, is the supremum of ||tD|| among all real t. That is,

 $\kappa(D) := \sup\{\alpha : ||tD|| \ge \alpha \text{ for some } t \in \Re\}.$

Wills [20] conjectured that $\kappa(D) \ge 1/(|D|+1)$ is true for all finite sets D. This conjecture is also known as the *lonely runner conjecture* by Bienia et al. [2]. Suppose m runners run laps on a circular track of unit circumference.

^{*}Supported in part by the National Science Foundation under grant MS-1247679.

Each runner maintains a constant speed, and the speeds of all the runners are distinct. A runner is called *lonely* if the distance on the circular track between him or her and every other runner is at least 1/m. Equivalently, the conjecture asserts that for each runner, there is some time t when he or she becomes lonely. The conjecture has been proved true for $|D| \leq 6$ (cf. [1, 3, 6, 7]), and remains open for $|D| \geq 7$.

The parameter $\kappa(D)$ is closely related to another parameter of D called the "density of integral sequences with missing differences." For a set D of positive integers, a sequence S of non-negative integers is called a D-sequence if $|x-y| \notin D$ for any $x, y \in S$. Denote S(n) as $|S \cap \{0, 1, 2, \dots, n-1\}|$. The upper density $\overline{\delta}(S)$ and the lower density $\underline{\delta}(S)$ of S are defined, respectively, by $\overline{\delta}(S) = \overline{\lim}_{n\to\infty} S(n)/n$ and $\underline{\delta}(S) = \underline{\lim}_{n\to\infty} S(n)/n$. We say S has density $\delta(S)$ if $\overline{\delta}(S) = \underline{\delta}(S) = \delta(S)$. The parameter of interest is the *density of* D, $\mu(D)$, defined by

$$\mu(D) := \sup \{ \delta(S) : S \text{ is a } D \text{-sequence} \}.$$

It is known that for any set D (cf. [4]):

$$\mu(D) \ge \kappa(D). \tag{1}$$

For two-element sets $D = \{a, b\}$, Cantor and Gordon [4] proved that $\kappa(D) = \mu(D) = \frac{\lfloor \frac{a+b}{2} \rfloor}{a+b}$. For 3-element sets D, if $D = \{a, b, a+b\}$ it was proved that $\kappa(D) = \mu(D)$ and the exact values were determined (see Theorem 2 below). For the general case $D = \{i, j, k\}$, various lower bounds of $\kappa(D)$ were given by Gupta [11], in which the values of $\mu(D)$ were also studied. In addition, among other results it was shown in [11] that if D is an arithmetic sequence then $\kappa(D) = \mu(D)$ and the value was determined.

The parameters $\kappa(D)$ and $\mu(D)$ are closely related to coloring parameters of distance graphs. Let D be a set of positive integers. The *distance graph* generated by D, denoted as $G(\mathbb{Z}, D)$, has all integers \mathbb{Z} as the vertex set. Two vertices are adjacent whenever their absolute value difference falls in D. The *chromatic number* (minimum number of colors in a proper vertex-coloring) of the distance graph generated by D is denoted by $\chi(D)$. It is known that $\chi(D) \leq \lceil 1/\kappa(D) \rceil$ for any set D (cf. [21]).

The fractional chromatic number of a graph G, denoted by $\chi_f(G)$, is the minimum ratio m/n $(m, n \in \mathbb{Z}^+)$ of an (m/n)-coloring, where an (m/n)-coloring is a function on V(G) to n-element subsets of $[m] = \{1, 2, \dots, m\}$

such that if $uv \in E(G)$ then $f(u) \cap f(v) = \emptyset$. It is known that for any graph $G, \chi_f(G) \leq \chi(G)$ (cf. [21]).

Denote the fractional chromatic number of $G(\mathbb{Z}, D)$ by $\chi_f(D)$. Chang et al. [5] proved that for any set of positive integers D, it holds that $\chi_f(D) = 1/\mu(D)$. Together with (1) we obtain

$$\frac{1}{\mu(D)} = \chi_f(D) \le \chi(D) \le \lceil \frac{1}{\kappa(D)} \rceil.$$
(2)

The chromatic number of distance graphs $G(\mathbb{Z}, D)$ with $D = \{2, 3, x, y\}$ was studied by several authors. For prime numbers x and y, the values of $\chi(D)$ for this family were first studied by Eggleton, Erdős and Skilton [10] and later on completely solved by Voigt and Walther [18]. For general values of x and y, Kemnitz and Kolberg [13] and Voigt and Walther [19] determined $\chi(D)$ for some values of x and y. This problem was completely solved for all values of x and y by Liu and Setudja [15], in which $\kappa(D)$ was utilized as one of the main tools. In particular, it was proved in [15] that $\kappa(D) \ge 1/3$ for many sets in the form $D = \{2, 3, x, y\}$. By (2), for those sets it holds that $\chi(D) = 3$.

In this article we further investigate those previously established lower bounds of $\kappa(D)$ for the family of sets $D = \{2, 3, x, y\}$. In particular, we determine the exact values of $\kappa(D)$ for $D = \{2, 3, x, y\}$ with $|x - y| \leq 6$. Furthermore, for some cases it holds that $\kappa(D) = \mu(D)$. Our results also lead to asymptotic behavior of $\kappa(D)$.

2 Preliminaries

We introduce terminologies and known results that will be used to determine the exact values of $\kappa(D)$. It is easy to see that if the elements of D have a common factor r, then $\kappa(D) = \kappa(D')$ and $\mu(D) = \mu(D')$, where D' = D/r = $\{d/r : d \in D\}$. Thus, throughout the article we assume that gcd(D) = 1, unless it is indicated otherwise.

The following proposition is derived directly from definitions.

Proposition 1. If $D \subseteq D'$ then $\kappa(D) \ge \kappa(D')$ and $\mu(D) \ge \mu(D')$.

The next result was established by Liu and Zhu [16], after confirming a conjecture of Rabinowitz and Proulx [17].

Theorem 2. [16] Suppose $M = \{a, b, a+b\}$ for some positive integers a and b with gcd(a, b) = 1. Then

$$\mu(M) = \kappa(M) = \max\left\{\frac{\lfloor \frac{2b+a}{3} \rfloor}{2b+a}, \frac{\lfloor \frac{2a+b}{3} \rfloor}{2a+b}\right\}.$$

By Proposition 1, if $\{a, b, a+b\} \subseteq D$ for some a and b, then Theorem 2 gives an upper bound for $\kappa(D)$.

For a *D*-sequence *S*, denote $S[n] = |\{0, 1, 2, ..., n\} \cap S|$. The next result was proved by Haralambis [12].

Lemma 3. [12] Let D be a set of positive integers, and let $\alpha \in (0, 1]$. If for every D-sequence S with $0 \in S$ there exists a positive integer n such that $\frac{S[n]}{n+1} \leq \alpha$, then $\mu(D) \leq \alpha$.

For a given *D*-sequence *S*, we shall write elements of *S* in an increasing order, $S = \{s_0, s_1, s_2, \ldots\}$ with $s_0 < s_1 < s_2 < \ldots$, and denote its *difference* sequence by

$$\Delta(S) = \{\delta_0, \delta_1, \delta_2, \ldots\} \text{ where } \delta_i = s_{i+1} - s_i.$$

We call a subsequence of consecutive terms in $\Delta(S)$, $\delta_a, \delta_{a+1}, \ldots, \delta_{a+b-1}$, generates a periodic interval of k copies, $k \geq 1$, if $\delta_{j(a+b)+i} = \delta_{a+i}$ for all $0 \leq i \leq b-1, 1 \leq j \leq k-1$. We denote such a periodic subsequence of $\Delta(S)$ by $(\delta_a, \delta_{a+1}, \ldots, \delta_{a+b-1})^k$. If the periodic interval repeats infinitely, then we simply denote it by $(\delta_a, \delta_{a+1}, \ldots, \delta_{a+b-1})$. If $\Delta(S)$ is infinite periodic, except the first finite number of terms, with the periodic interval (t_1, t_2, \ldots, t_k) , then the density of S is $k/(\sum_{i=1}^k t_i)$.

Proposition 4. A sequence of non-negative integers S is a D-sequence if and only if $\sum_{i=a}^{b} \delta_i \notin D$ for every $a \leq b$.

Proposition 5. Assume $2, 3 \in D$. If S is a D-sequence, then $\delta_i + \delta_{i+1} \geq 5$ for all i. The equality holds only when $\{\delta_i, \delta_{i+1}\} = \{1, 4\}$. Consequently, $\mu(D) \leq 2/5$.

Lemma 6. Let $D = \{2, 3\} \cup A$. Then $\kappa(D) = 2/5$ if and only if $A \subseteq \{x : x \equiv 2, 3 \pmod{5}\}$. Furthermore, if $\kappa(D) = 2/5$, then $\mu(D) = 2/5$.

Proof. Let $D = \{2,3\} \cup A$. Assume $A \subseteq \{x : x \equiv 2, 3 \pmod{5}\}$. Let t = 1/5. Then $||td|| \ge 2/5$ for all $d \in D$. Hence $\kappa(D) \ge 2/5$. On the other hand, the density of the infinite periodic *D*-sequence *S* with $\Delta(S) = (1,4)$ is 2/5. By Proposition 5, this is an optimal *D*-sequence. Hence, $\mu(D) = 2/5$, implying $\kappa(D) = 2/5$.

Conversely, assume $\kappa(D) = 2/5$. Then $\mu(D) \ge 2/5$. By Proposition 5, $\mu(D) = 2/5$. By Proposition 4, this implies that if $d \in D$, then $d \not\equiv 0, 1, 4$ (mod 5). Thus the result follows.

Note, in $D = \{2, 3, x, y\}$, if x = 1, then it is known [16] and easy to see that $\mu(D) = \kappa(D) = 1/4$ if y is not a multiple of 4 (with $\Delta(S) = (4)$); otherwise y = 4k and $\mu(D) = \kappa(D) = k/(4k+1)$ (with $\Delta(S) = ((4)^{k-1}5)$). Hence throughout the article we assume x > 3.

Another method we will utilize is an alternative definition of $\kappa(D)$. In this definition, for a projected lower bound α of $\kappa(D)$, for each element z in Dthe valid *time* t for z to achieve α is expressed as a union of disjoint intervals. Let $\alpha \in (0, \frac{1}{2})$. For positive integer i, define $I_i(\alpha) = \{t \in (0, 1) : || ti || \ge \alpha\}$. Equivalently,

$$I_i(\alpha) = \{t : n + \alpha \le ti \le n + 1 - \alpha, 0 \le n \le i - 1\}.$$

That is, I_i consists of intervals of reals with length $(1 - 2\alpha)/i$ and centered at (2n + 1)/(2i), n = 0, 1, ..., i - 1. By definition, $\kappa(D) \ge \alpha$ if and only if $\bigcap_{i \in D} I_i(\alpha) \ne \emptyset$. Thus,

$$\kappa(D) = \sup\left\{\alpha \in (0, \frac{1}{2}) : \bigcap_{i \in D} I_i(\alpha) \neq \emptyset\right\}.$$

Observe that if $\bigcap_{i \in D} I_i(\alpha)$ consists of only isolated points, then $\kappa(D) \leq \alpha$. Hence, we have the following:

Proposition 7. For a set D, $\kappa(D) \leq d/c$ if $\bigcap_{i \in D} I_i$ is a set of isolated points, where

$$I_i = \bigcup_{n=0}^{i-1} \left[\frac{d+cn}{i}, \frac{c-d+cn}{i} \right].$$

3
$$D = \{2, 3, x, y\}$$
 for $y = x + 1, x + 2, x + 3$

Theorem 8. Let $D = \{2, 3, x, x + 1\}, x \ge 4$. Then

$$\kappa(D) = \mu(D) = \begin{cases} \frac{2\lfloor \frac{x+3}{5} \rfloor + 1}{x+3} & \text{if } x \equiv 1 \pmod{5};\\ \frac{2\lfloor \frac{x+3}{5} \rfloor}{x+3} & \text{otherwise.} \end{cases}$$

Proof. We prove the following cases.

Case 1. x = 5k + 2. The result follows by Lemma 6.

Case 2. x = 5k+3. Let t = (k+1)/(5k+6). Then $||dt|| \ge (2k+2)/(5k+6)$ for every $d \in D$. Hence $\kappa(D) \ge (2k+2)/(5k+6)$.

By (1) it remains to show that $\mu(D) \leq (2k+2)/(5k+6)$. Assume to the contrary that $\mu(D) > (2k+2)/(5k+6)$. By Lemma 3, there exists a *D*-sequence *S* with S[n]/(n+1) > (2k+2)/(5k+6) for all $n \geq 0$. This implies, for instance, $S[0] \geq 1$, so $s_0 = 0$; $S[2] \geq 2$, so $s_1 = 1$ (as $2, 3 \in D$); $S[5] \geq 3$, so $s_3 = 5$. Moreover, $S[5k+5] \geq 2k+3$. By Proposition 5, it must be $(\delta_0, \delta_1, \delta_2, \ldots, \delta_{2k+1}) = (1, 4, 1, 4, \ldots, 1, 4)$. This implies $5k+5 \in S$, which is impossible since $1 \in S$ and $5k+4 \in D$. Therefore, $\mu(D) = \kappa(D) = (2k+2)/(5k+6)$.

Case 3. x = 5k+4. Let t = (k+1)/(5k+7). Then $||dt|| \ge (2k+2)/(5k+7)$ for all $d \in D$. Hence $\kappa(D) \ge (2k+2)/(5k+7)$.

By (1) it remains to show that $\mu(D) \leq (2k+2)/(5k+7)$. Assume to the contrary that $\mu(D) > (2k+2)/(5k+7)$. By Lemma 3, there exists a *D*-sequence *S* with S[n]/(n+1) > (2k+2)/(5k+7) for all $n \geq 0$. This implies, for instance, $S[0] \geq 1$, so $s_0 = 0$; $S[3] \geq 2$, so $s_1 = 1$ (as $2, 3 \in D$); and $S[5k+6] \geq 2k+3$. By Proposition 5, either 5k+5 or 5k+6 is an element in *S*. This is impossible since $0, 1 \in S$ and $5k+4, 5k+5 \in D$. Thus $\mu(D) = \kappa(D) = (2k+2)/(5k+7)$.

Case 4. x = 5k+5. Let t = (k+1)/(5k+8). Then $||dt|| \ge (2k+2)/(5k+8)$ for all $d \in D$. Hence $\kappa(D) \ge (2k+2)/(5k+8)$.

It remains to show $\mu(D) \leq (2k+2)/(5k+8)$. Assume to the contrary that $\mu(D) > (2k+2)/(5k+8)$. By Lemma 3, there exists a *D*-sequence *S* with S[n]/(n+1) > (2k+2)/(5k+8) for all $n \geq 0$. Similar to the above, one has $0, 1 \in S$ and $S[5k+7] \geq 2k+3$. This implies that one of 5k+5, 5k+6, or 5k+7 is an element in *S*, which is again impossible. Therefore, $\mu(D) = \kappa(D) = (2k+2)/(5k+8)$. Case 5. x = 5k+1. Let t = (k+1)/(5k+4). Then $||dt|| \ge (2k+1)/(5k+4)$ for all $d \in D$. Hence $\kappa(D) \ge (2k+1)/(5k+4)$.

Now we show $\mu(D) \leq (2k+1)/(5k+4)$. Assume to the contrary that $\mu(D) > (2k+1)/(5k+4)$. By Lemma 3, $(s_0, s_1) = (0, 1)$, and $S[5k+3] \geq 2k+2$. Because $S[5k] \leq 2k+1$, so $S \cap \{5k+1, 5k+2, 5k+3\} \neq \emptyset$, which is impossible. Therefore, $\mu(D) = \kappa(D) = (2k+1)/(5k+4)$.

By the above proofs, one can extend the family of sets D to the following:

Corollary 9. Let $D = \{2, 3, x, x + 1\} \cup D'$, where $D' \subseteq \{y : y \equiv \pm 2, \pm 3 \pmod{(x+3)}\}$. Then $\mu(D) = \kappa(D) = \mu(\{2, 3, x, x + 1\})$.

Corollary 10. Let $D = \{2, 3, x, x+1\}$. Then

$$\lim_{x \to \infty} \kappa(D) = \frac{2}{5}$$

Theorem 11. Let $D = \{2, 3, x, x + 2\}$, $x \ge 4$. Assume $x + 4 = 6\beta + r$ with $0 \le r \le 5$. Then

$$\kappa(D) = \begin{cases} \frac{\lfloor \frac{x+4}{3} \rfloor}{x+4} & \text{if } 0 \le r \le 2; \\ \frac{\lfloor \frac{2x+1}{3} \rfloor}{2x+2} & \text{if } 3 \le r \le 5. \end{cases}$$

Furthermore, $\kappa(D) = \mu(D)$ if $r \neq 3$.

Proof. We prove the following cases.

Case 1. x = 6k + 2. Then r = 0. Let t = 1/6. Then $||dt|| \ge 1/3$ for all $d \in D$. Hence $\kappa(D) \ge 1/3$.

Now we prove $\mu(D) \leq 1/3$. Let $M' = \{2, x, x+2\} = \{2, 6k+2, 6k+4\}$. By Theorem 2 with $M = \{1, 3k+1, 3k+2\}$, we obtain $\mu(M') = \mu(M) = 1/3$. Because $M' \subseteq D$, so $\mu(D) \leq \mu(M') = 1/3$.

Case 2. x = 6k + 3. Then r = 1. Let t = (k+1)/(6k+7). Then $||dt|| \ge (2k+2)/(6k+7)$ for all $d \in D$. Hence $\kappa(D) \ge (2k+2)/(6k+7)$.

By Theorem 2 with $M = \{2, x, x+2\} = \{2, 6k+3, 6k+5\}$, we get $\mu(M) = (2k+2)/(6k+7)$. Because $M \subseteq D$, so $\mu(D) \leq \mu(M) = (2k+2)/(6k+7)$. Thus, the result follows.

Case 3. x = 6k + 4. Then r = 2. Let t = (k+1)/(6k+8). Then $||dt|| \ge (2k+2)/(6k+8)$ for all $d \in D$. Hence $\kappa(D) \ge (2k+2)/(6k+8)$.

By Theorem 2 with $M = \{2, x, x+2\} = \{2, 6k+4, 6k+6\}$ which can be reduced to $M' = \{1, 3k + 2, 3k + 3\}$, we obtain $\mu(M) = (k+1)/(3k+4)$. Therefore, $\mu(D) \leq \mu(M) = (2k+2)/(6k+8)$. So the result follows.

Case 4. x = 6k + 5. Then r = 3. Let t = (2k + 3)/(12k + 12). Then $||dt|| \ge (4k+3)/(12k+12)$ for all $d \in D$. Hence $\kappa(D) \ge (4k+3)/(12k+12)$.

 $\bigcap_{i=2,3,x,x+2} I_i \text{ is a set of isolated}$ By Proposition 7, it remains to show that

points, where

$$I_i = \bigcup_{n=0}^{i-1} \left[\frac{4k+3+n(12k+12)}{i}, \frac{8k+9+n(12k+12)}{i} \right].$$

Let $I = \bigcap_{i=2,3,x,x+2} I_i$. By symmetry it is enough to consider the interval $I \cap [0, (12k+12)/2]$. In the following we claim $I \cap [0, 6k+6] = \{2k+3\}$. (Indeed, this single point is the numerator of the t value at the beginning of the proof.)

Note that $I_2 \cap I_3 \cap [0, 6k+6] = [(4k+3)/2, (8k+9)/3]$. Denote this interval by

$$I_{2,3} = \left[\frac{4k+3}{2}, \frac{8k+9}{3}\right].$$

We then begin to investigate possible values of n for I_x and I_{x+2} , respectively, that will fall within $I_{2,3}$. First, we compare the I_x intervals with $I_{2,3}$. Recall

$$I_x = \left[\frac{3+4k+n(12+12k)}{6k+5}, \frac{8k+9+n(12+12k)}{6k+5}\right], \ 0 \le n \le 6k+4.$$

By calculation, the intervals of I_x that intersect with $I_{2,3}$ are those with $n \geq k$. Similarly, we compare I_{x+2} intervals with $I_{2,3}$. Recall

$$I_{x+2} = \left[\frac{3+4k+n(12+12k)}{6k+7}, \frac{8k+9+n(12+12k)}{6k+7}\right], \ 0 \le n \le 6k+6k$$

By calculation, the intervals of I_{x+2} that intersect with $I_{2,3}$ are those with $n \ge k+1.$

Next, we consider the intersection between intervals of I_x and I_{x+2} . Let n = k + a for some $a \ge 0$ for the I_x interval, and let n = k + a' for some $a' \geq 1$ for the I_{x+2} interval. By taking the common denominator of the I_x and I_{x+2} intervals we obtain the following numerators of those intervals:

for
$$I_x: [21 + 84a + 130k + 156ak + 180k^2 + 72ak^2 + 72k^3]$$

$$\begin{aligned} & 63+84a+194k+156ak+204k^2+72ak^2+72k^3];\\ & \text{for } I_{x+2}: [15+60a'+98k+132a'k+156k^2+72a'k^2+72k^3,\\ & 45+60a'+154k+132a'k+180k^2+72a'k^2+72k^3]. \end{aligned}$$

Using a = a' = 1, we get

for
$$I_x : [105 + 286k + 252k^2 + 72k^3, 147 + 350k + 276k^2 + 72k^3]$$

for I_{x+2} : $[75 + 230k + 228k^2 + 72k^3, 105 + 286k + 252k^2 + 72k^3]$.

Thus, there is a single point intersection for I_x and I_{x+2} when a = a' = 1, which is $\{2k+3\}$. This single point intersection is also within the $I_{2,3}$ interval. Hence, $\{2k+3\} \in I \cap [0, 6k+6]$.

In addition, through inspection it is clear that making n = k (i.e. a = 0) for the I_x interval and $n \ge k+1$ ($a' \ge 1$) for the I_{x+2} interval removes I_x and I_{x+2} from intersecting one another. For all other cases, a = 1 and $a' \ge 2$, $a \ge 2$ and a' = 1, or $a, a' \ge 2$, there will never be an intersection of intervals for all elements in D, either because the $I_{2,3}$ interval is too small or because the I_{x+2} elements become too big. Thus, $I \cap [0, 6k + 6] = \{2k + 3\}$.

Case 5. x = 6k + 6. Then r = 4. Let t = (2k+3)/(12k+14). Then $||dt|| \ge (4k+4)/(12k+14)$ for all $d \in D$. Hence $\kappa(D) \ge (4k+4)/(12k+14)$.

By Theorem 2 with $M = \{2, x, x+2\} = \{2, 6k+6, 6k+8\}$ which can be reduced to $M' = \{1, 3k+3, 3k+4\}$, we get $\mu(M) = \kappa(M) = (2k+2)/(6k+7)$. Hence, $\mu(D) \le \mu(M) = (2k+2)/(6k+7)$.

Case 6. x = 6k + 7. Then r = 5. Let t = (2k+3)/(12k+16). Then $||dt|| \ge (4k+5)/(12k+16)$ for all $d \in D$. Hence $\kappa(D) \ge (4k+5)/(12k+16)$. By Theorem 2 with $M = \{2, x, x+2\} = \{2, 6k+7, 6k+9\}$, we obtain $\mu(M) = \kappa(M) = (4k+5)/(12k+16)$. Therefore, $\mu(D) \le (4k+5)/(12k+16)$. 16).

Theorem 12. Let $D = \{2, 3, x, x + 3\}$, $x \ge 4$. Assume $(2x + 3) = 9\beta + r$ with $0 \le r \le 8$. Then

$$\kappa(D) = \begin{cases} \frac{3\lfloor \frac{2x+3}{9} \rfloor}{2x+3} & \text{if } 0 \le r \le 5; \\ \frac{\lfloor \frac{x+5}{3} \rfloor}{x+6} & \text{if } 6 \le r \le 8. \end{cases}$$

Furthermore, if r = 0, 1, 3, 6, 8 *then* $\kappa(D) = \mu(D)$ *.*

Proof. We prove the following cases:

Case 1. x = 9k + 3. Then r = 0. Let t = 2/9. Then $||dt|| \ge 1/3$ for all $d \in D$. Hence $\kappa(D) \ge (6k+3)/(18k+9) = 1/3$.

By Theorem 2 with $M = \{3, x, x + 3\} = \{3, 9k + 3, 9k + 6\}$, which can be reduced to $M' = \{1, 3k + 1, 3k + 2\}$, resulting in $\mu(M) = \kappa(M) = 1/3$. Because $M \subseteq D$, so $\mu(D) = \mu(M) = 1/3$.

Case 2. x = 9k + 8. Then r = 1. Let t = (4k + 4)/(18k + 19). Then $||dt|| \ge (6k+6)/(18k+19)$ for all $d \in D$. Hence $\kappa(D) \ge (6k+6)/(18k+19)$.

By Theorem 2 with $M = \{3, x, x+3\}$, we get $\kappa(M) = (6k+6)/(18k+19)$. Hence, $\mu(D) \le \kappa(M) = (6k+6)/(18k+19)$.

Case 3. x = 9k + 4. Then r = 2. Let t = (4k + 2)/(18k + 11). Then $||dt|| \ge (6k+3)/(18k+11)$ for all $d \in D$. Thus, $\kappa(D) \ge (6k+3)/(18k+11)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I = \bigcap_{i=2,3,x,x+3} I_i$. By calculation we have $I \cap [0, 9k + (11/2)] =$

 $\{4k+2\}$. This single point of intersection occurs when n = 2k in the I_x interval, and n = 2k + 1 in the I_{x+3} interval.

Case 4. x = 9k. Then r = 3. Let t = 4k/(18k + 3). Then $||dt|| \ge (6k)/(18k + 3)$ for all $d \in D$. Thus $\kappa(D) \ge (2k)/(6k + 1)$.

By Theorem 2 with $M = \{3, x, x+3\} = \{3, 9k, 9k+3\}, \mu(M) = \kappa(M) = (2k)/(6k+1)$. Hence, the result follows.

Case 5. x = 9k + 5. Then r = 4. Let t = (4k + 2)/(18k + 13). Then $||dt|| \ge (6k + 3)/(18k + 13)$ for all $d \in D$. Thus $\kappa(D) \ge (6k + 3)/(18k + 13)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I = \bigcap_{i=2,3,x,x+3} I_i$. By calculation we have $I \cap [0, 9k+(13/2)] = \{4k+2\}$. This single point of intersection occurs when n = 2k in the I_x interval, and n = 2k + 1 in the I_{x+3} interval.

Case 6. x = 9k + 1. Then r = 5. Let t = (4k)/(18k + 5). Then $||dt|| \ge (6k)/(18k + 5)$ for all $d \in D$. Thus $\kappa(D) \ge (6k)/(18k + 5)$.

The proof for $\kappa(D) \leq (6k)/(18k+5)$ is similar to the proof of Case 4 in Theorem 11. Let $I = \bigcap_{i=2,3,x,x+3} I_i$. By calculation we have $I \cap [0, 9k+(5/2)] =$

{4k}. This single point of intersection occurs when n = 2k - 1 in the I_x interval, and n = 2k in the I_{x+3} interval.

Case 7. x = 9k + 6. Then r = 6. Let t = (2k+3)/(9k+12). Then $||dt|| \ge (3k+3)/(9k+12)$ for all $d \in D$. Thus $\kappa(D) \ge (k+1)/(3k+4)$.

By Theorem 2 with $M = \{3, x, x+3\}$ with $M = \{3, x, x+3\} = \{3, 9t + 6, 9t + 9\}$, which can be reduced to $M' = \{1, 3t + 2, 3t + 3\}$, we get $\mu(M) = \kappa(M) = (k+1)/(3k+4)$. Because $M \subseteq D$, so $\kappa(D) \leq \mu(D) \leq \mu(M) \leq \kappa(M) = (k+1)/(3k+4)$.

Case 8. x = 9k + 11. Then r = 7. Let t = (2k + 4)/(9k + 17). Then $||dt|| \ge (3k + 5)/(9k + 17)$ for all $d \in D$. Thus $\kappa(D) \ge (3k + 5)/(9k + 17)$.

The proof for the other direction is similar to the proof of Case 4 in Theorem 11. Let $I = \bigcap_{i=2,3,x,x+3} I_i$. By calculation we have $I \cap [0, 9k+(17/2)] = \{2k+4\}$. This single point of intersection occurs when n = 2k + 2 in the I_x interval, and n = 2k + 3 in the I_{x+3} interval.

Case 9. x = 9k + 7. Then r = 8. Let t = (2k + 3)/(9k + 13). Then $||dt|| \ge (3k + 4)/(9k + 13)$ for all $d \in D$. Thus $\kappa(D) \ge (3k + 4)/(9k + 13)$.

By Theorem 2 with $M = \{3, x, x + 3\} = \{3, 9t + 7, 9t + 10\}$, we get $\kappa(M) = (3k+4)/(9k+13)$. Because $M \subseteq D$, so $\kappa(D) \leq \mu(D) \leq \mu(M) = \kappa(M) = (3k+4)/(9k+13)$.

Corollary 13. Let $D = \{2, 3, x, y\}$ where $y \in \{x + 2, x + 3\}$. Then

$$\lim_{x \to \infty} \kappa(D) = \frac{1}{3}.$$

4
$$D = \{2, 3, x, y\}$$
 for $y = x + 4, x + 5, x + 6$

By similar proofs to the previous section, we obtain the following results.

Theorem 14. Let $D = \{2, 3, x, x + 4\}, x \ge 4$. Assume $(x + 4) = 5\beta + r$ with $0 \le r \le 4$. Then

$$\kappa(D) = \begin{cases} \frac{2\beta + r}{x + 7} & \text{if } 0 \le r \le 1; \\ \mu(D) = \frac{2}{5} & \text{if } r = 2; \\ \frac{2\beta}{x + 2} & \text{if } 3 \le r \le 4. \end{cases}$$

Proof. The case for r = 2 is from Lemma 6. The following table gives the corresponding t, $\kappa(D)$, and the n values of I_x and I_{x+4} where the single intersection point occurs.

x	r	t	$n \text{ in } I_x$	$n \text{ in } I_{x+4}$	$\kappa(D)$
5k + 4	3	(k+1)/(5k+6)	k	k+1	(2k+2)/(5k+6)
5k + 5	4	(k+1)/(5k+7)	k	k+1	(2k+2)/(5k+7)
5k + 6	0	(k+3)/(5k+13)	k+1	k+2	(2k+4)/(5k+13)
5k + 7	1	(k+3)/(5k+14)	k+1	k+2	(2k+5)/(5k+14)
5k + 8	2	1/5			2/5

Theorem 15. Let $D = \{2, 3, x, x + 5\}, x \ge 4$. Assume $(x + 3) = 5\beta + r$ with $0 \le r \le 4$. Then

 $\kappa(D) = \begin{cases} \mu(D) = \frac{2}{5} & \text{if } 0 \le r \le 1; \\ \frac{2\beta}{x+2} & \text{if } 2 \le r \le 3; \\ \frac{2\beta+1}{x+3} & \text{if } r = 4. \end{cases}$

Proof. The cases for r = 0, 1 are by Lemma 6. The following table gives the corresponding $t, \kappa(D)$, and the n values of I_x and I_{x+5} where the single intersection point occurs.

x	r	t	$n \text{ in } I_x$	$n \text{ in } I_{x+5}$	$\kappa(D)$
5k + 4	2	(k+1)/(5k+6)	k+1	k+1	(2k+2)/(5k+6)
5k + 5	3	(k+1)/(5k+7)	k+1	k+1	(2k+2)/(5k+7)
5k + 6	4	(k+2)/(5k+9)	k+1	k+2	(2k+3)/(5k+9)
5k + 7	0	1/5			2/5
5k + 8	1	1/5			2/5

Theorem 16. Let $D = \{2, 3, x, x + 6\}, x \ge 4$. Assume $(x + 8) = 5\beta + r$ with $0 \le r \le 4$. Then

$$\kappa(D) = \begin{cases} \mu(D) = \frac{2}{7} & \text{if } x = 5; \\ \mu(D) = \frac{2}{5} & \text{if } r = 0; \\ \frac{2\beta}{x+8} & \text{if } 1 \le r \le 3 \text{ and } x \ne 5; \\ \frac{2\beta+1}{x+3} & \text{if } r = 4. \end{cases}$$

Proof. Assume x = 5. That is $D = \{2, 3, 5, 11\}$. Letting t = 1/7 we get $||td|| \geq 2/7$ for every $d \in D$. Hence, $\kappa(D) \geq 2/7$. On the other hand, by Theorem 2, $\mu(\{2, 3, 5\}) = 2/7$. Therefore, by (2), we have $\kappa(D) \le \mu(D) \le$ 2/7.

The case for r = 0 is from Lemma 6. The following table gives the corresponding t, $\kappa(D)$, and the n values of I_x and I_{x+6} where the single intersection point occurs.

x	r	t	$n \text{ in } I_x$	$n \text{ in } I_{x+6}$	$\kappa(D)$
5k + 4	2	(k+2)/(5k+12)	k	k+1	(2k+4)/(5k+12)
5k + 5	3	(k+2)/(5k+13)	k	k+1	(2k+4)/(5k+13)
5k + 6	4	(k+2)/(5k+9)	k+1	k+2	(2k+3)/(5k+9)
5k + 7	0	1/5			2/5
5k + 8	1	(k+3)/(5k+16)	k+1	k+2	(2k+6)/(5k+16)

Corollary 17. Let $D = \{2, 3, x, y\}$ where $y \in \{x + 4, x + 5, x + 6\}$. Then

$$\lim_{x \to \infty} \kappa(D) = \frac{2}{5}$$

Concluding remark and future study. Similar to Corollary 9, one can obtain sets D' that are extensions of the sets D studied in this article, $D \subset D'$, such that $\kappa(D) = \kappa(D')$. In addition, the methods used in this article can be applied to other sets $D = \{2, 3, x, x + c\}$ with $c \ge 7$. For a fixed c, preliminary results we obtained thus far indicate that the values of $\kappa(D)$ might be inconsistent for the first finite terms, while after a certain threshold, they seem to be more consistent (that is, most likely it can be described by a single formula). Thus, we would like to investigate whether the conclusion of Corollary 17 holds for all $D = \{2, 3, x, y\}, x < y$, where $y \neq x + 2, x + 3$? In a broader sense, it is interesting to further study the asymptotic behavior of $\kappa(D)$ for sets D containing 2 and 3, and identify any dominating factors for such behavior.

References

[1] J. Barajas and O. Serra, The lonely runner with seven runners, The Electronic Journal of Combinatorics, 15 (2008), #R48.

- [2] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view obstructions, and the lonely runner, J. Combin. Theory (B), 72 (1998) 1-9.
- [3] T. Bohman, R. Holzman, D. Kleitman, Six lonely runners, Electronic J. Combinatorics, 8 (2001), Research Paper 3, 49 pp.
- [4] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Th. (A), 14 (1973) 281 – 287.
- [5] G. Chang, D. Liu and X. Zhu, *Distance graphs and T-coloring*, J. Combin. Th. (B), 75 (1999) 159 – 169.
- [6] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A, 16 (1974) 1 11.
- [7] T. W. Cusick and C. Pomerance, View-obstruction problems, III, J. Number Th., 19 (1984), 131–139.
- [8] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring the real line, J. Combin. Theory (B), 39 (1985) 86 – 100.
- [9] R. B. Eggleton, P. Erdős and D. K. Skilton, Research problem 77, Disc. Math., 58 (1986) 323.
- [10] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring prime distance graphs, Graphs and Combinatorics, 6 (1990) 17 – 32.
- [11] S. Gupta, Sets of Integers with Missing Differences, J. Combin. Th. (A) 89, (2000) 55–69.
- [12] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Th. (A), 23 (1977) 22 - 33.
- [13] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Disc. Math., 191 (1998) 113 – 123.
- [14] D. Liu, From Rainbow to the Lonely Runner: A survey on coloring parameters of distance graphs, Taiwanese J. Math., 12 (2008) 851 – 871.
- [15] D. Liu and A. Sutedja, Chromatic Number of Distance Graphs Generated by the Sets {2, 3, x, y}, J. of Combin. Optimization, 25 (2013), 680 – 693.

- [16] D. Liu and X. Zhu, Fractional chromatic number and circular chromatic number for distance graphs with large clique size, J. Graph Theory, 47 (2004) 129 - 146.
- [17] J. Rabinowitz and V. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods, 6 (1985), 507–518.
- [18] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math., 51 (1994) 197 – 209.
- [19] M. Voigt and H. Walther, On the chromatic number of special distance graphs, Disc. Math., 97 (1991) 395 – 397.
- [20] J. M. Wills, Zwei Sätze über inhomogene diophantische appromixation von irrationlzahlen, Monatsch. Math., 71 (1967) 263 – 269.
- [21] X. Zhu, Circular chromatic number: A survey, Discrete Mathematics, 229 (2001) 371 410.