A Combinatorial Proof for the Circular Chromatic Number of Kneser Graphs

Daphne Der-Fen Liu * Department of Mathematics California State University, Los Angeles, USA Email: dliu@calstatela.edu

> Xuding Zhu[†] Department of Mathematics Zhejiang Normal University, China Email: xudingzhu@gmail.com

> > May 12, 2015

Abstract

Chen [4] confirmed the Johnson-Holroyd-Stahl conjecture that the circular chromatic number of a Kneser graph is equal to its chromatic number. A shorter proof of this result was given by Chang, Liu, and Zhu [3]. Both proofs were based on Fan's lemma [5] in algebraic topology. In this article we give a further simplified proof of this result. Moreover, by specializing a constructive proof of Fan's lemma by Prescott and Su [19], our proof is self-contained and combinatorial.

1 Introduction

Let G be a graph and t a positive integer. A proper t-coloring of G is a mapping that assigns to each vertex a color from a set of t colors such that adjacent vertices must receive different colors. The chromatic number of G denoted as $\chi(G)$ is the smallest t of such a coloring admitted by G. Let $n \ge 2k$ be positive integers. The Kneser graph $\operatorname{KG}(n,k)$ has the vertex set $\binom{[n]}{k}$ of all k-subsets of $[n] = \{1, 2, 3, \ldots, n\}$, where two

^{*}Corresponding author.

[†]Grant Numbers: NSF11171310 and ZJNSF Z6110786.

vertices A and B are adjacent if $A \cap B = \emptyset$. Figure 1 shows an example of KG(5,2) with a proper 3-coloring.

Figure 1: A proper 3-coloring of KG(5, 2) (also known as Petersen graph).

Lovász [15] in 1978 confirmed the Kneser conjecture [11] that the chromatic number of KG(n, k) is equal to n - 2k + 2. Lovász's proof applied topological methods to a combinatorial problem. Since then, algebraic topology has became an important tool in combinatorics. In particular, various alternative proofs (cf. [2, 7, 17]) and generalizations (cf. [1, 12, 13, 16, 20, 21]) of the Lovász-Kneser theorem have been developed. Most of these proofs utilized methods or results in algebraic topology, mainly the Borsuk-Ulam theorem and its extensions.

Theorem 1. (Lovász-Kneser Theorem [15]) For any $n \ge 2k$,

$$\chi(\mathrm{KG}(n,k)) = n - 2k + 2.$$

In 2004, Matoušek [17] gave a self-contained combinatorial proof for the Lovász-Kneser Theorem by utilizing the Tucker Lemma [23] together with a specialized constructive proof for the Tucker Lemma by Freund and Todd [6]. Later on, Ziegler [27] gave combinatorial proofs for various generalizations of the Lovász-Kneser Theorem.

For positive integers $p \ge 2q$, a (p,q)-coloring for a graph G is a mapping $f: V(G) \rightarrow \{0, 1, 2, \ldots, p-1\}$ such that $|f(u) - f(v)|_p \ge q$ holds for adjacent vertices u and v, where $|x|_p = \min\{|x|, p-|x|\}$. The circular chromatic number of G, denoted by $\chi_c(G)$, is the infimum p/q of a (p,q)-coloring admitted by G. It is known (cf. [24, 25]) that $\chi_c(G)$ is rational if G is finite, and the following hold for every graph G:

$$\chi(G) - 1 < \chi_c(G) \leqslant \chi(G). \tag{1.1}$$

Thus the circular chromatic number is a refinement of the chromatic number for a graph. The circular chromatic number reveals more information about the structure of a graph than the chromatic number does. Families of graphs for which the equality $\chi_c(G) = \chi(G)$ holds possess special structure properties and they have been broadly studied (cf. [24, 25]). Kneser graphs turned out to be an example among those widely studied families of graphs.

Johnson, Holroyd, and Stahl [10] conjectured that $\chi_c(\mathrm{KG}(n,k)) = \chi(\mathrm{KG}(n,k))$. This conjecture has received much attention. The cases for k = 2, and n = 2k + 2 was confirmed in [10]. By a combinatorial method, Hajiabolhassan and Zhu [9] proved that for a fixed k, the conjecture holds for sufficiently large n. Using topological approaches, Meunier [18] and Simonyi and Tardos [22] confirmed independently the case when n is even. Indeed, all these results were proved true [9, 14, 18, 22] for the Schrijver graph $\mathrm{SG}(n,k)$, a subgraph of $\mathrm{KG}(n,k)$ induced by the k-subsets of [n] that do not contain adjacent numbers modulo n. On the other hand, it was shown by Simonyi and Tardos [22] that for any $\epsilon > 0$, there exists $\delta > 0$ such that if n is odd and $n - 2k \leq \delta k$, then $\chi_c(\mathrm{SG}(n,k)) \leq \chi(\mathrm{SG}(n,k)) - 1 + \epsilon$. Hence the Johnson-Holroyd-Stahl conjecture cannot be extended to Schrijver graphs.

In 2011, Chen [4] confirmed the Johnson-Holroyd-Stahl conjecture. A simplified proof for this result was given by Chang, Liu, and Zhu [3]. At the center of both proofs is the following:

Lemma 2. (Alternative Kneser Coloring Lemma [4, 3]) Suppose $c : \binom{[n]}{k} \rightarrow [n-2k+2]$ is a proper coloring of KG(n,k). Then [n] can be partitioned into three subsets, $[n] = S \cup T \cup \{a_1, a_2, \ldots, a_{n-2k+2}\}$, where |S| = |T| = k-1, and $c(S \cup \{a_i\}) = c(T \cup \{a_i\}) = i$ for $i = 1, 2, \ldots, n-2k+2$.

Let c be a proper (n-2k+2)-coloring of KG(n, k). The Lovász-Kneser Theorem is equivalent to saying that every color class in c is non-empty. Lemma 2 strengthens this result by revealing the exquisite structure of a Kneser graph induced by an optimal coloring. For instance, the proper 3-coloring in Figure 1 has $a_i = i$ for i = 1, 2, 3, $S = \{4\}$, and $T = \{5\}$. By Lemma 2, the subgraph of KG(n, k) induced by the vertices $S \cup \{a_i\}$ and $T \cup \{a_i\}, 1 \leq i \leq n - 2k + 2$, is a fully colored (i.e. uses all colors) complete bipartite graph $K_{n-2k+2,n-2k+2}$ minus a perfect matching. Moreover, the closed neighborhood for each vertex in this subgraph is fully colored.

It is known (cf. [8]) that this fact easily implies that $\chi_c(\mathrm{KG}(n,k)) = \chi(\mathrm{KG}(n,k))$. For completeness, we include a proof of this implication.

Theorem 3. [4, 3] For positive integers $n \ge 2k$, $\chi_c(\mathrm{KG}(n,k)) = n - 2k + 2$.

Proof. Assume to the contrary that $\chi_c(\mathrm{KG}(n,k)) = p/q$ where $\mathrm{gcd}(p,q) = 1$ and $q \ge 2$. Let d = n - 2k + 2. By (1.1), it must be (d-1)q . Let <math>f be a (p,q)-coloring for $\mathrm{KG}(n,k)$. The function c defined on $\binom{[n]}{k}$ by $c(v) = \lfloor f(v)/q \rfloor$ is a proper coloring of $\mathrm{KG}(n,k)$ using colors in $\{0, 1, 2, \ldots, d-1\}$. By Lemma 2, there is a partition $[n] = S \cup T \cup \{a_0, a_1, \ldots, a_{n-2k+1}\}$ such that $c(S \cup \{a_i\}) = c(T \cup \{a_i\}) = i$ for $0 \leq i \leq n-2k+1$. Denote $S_i = S \cup \{a_i\}$ and $T_i = T \cup \{a_i\}$ for $i = 0, 1, \ldots, d-1$. By the definition of c, we obtain

$$iq \leq f(S_i), f(T_i) < \min\{(i+1)q, p\}, \text{ for } i = 0, 1, 2, \dots, d-1.$$

Assume $f(S_0) \ge f(T_0)$ (the other case can be proved similarly). Then $f(T_1) \ge f(S_0) + q$ and $f(S_2) \ge f(T_1) + q$, implying $f(S_2) \ge f(S_0) + 2q$. Continue this process until the last term. If d is even, we obtain $f(T_{d-1}) \ge f(S_0) + (d-1)q$. Because S_0 and T_{d-1} are adjacent, so $|f(S_0) - f(T_{d-1})|_p \ge q$. This implies that $p - f(T_{d-1}) + f(S_0) \ge q$. Hence, $p \ge dq$, a contradiction.

If d is odd, we obtain $f(S_{d-1}) \ge f(S_0) + (d-1)q$. Because T_0 and S_{d-1} are adjacent, so $|f(T_0) - f(S_{d-1})|_p \ge q$. This implies that $p - f(S_{d-1}) + f(T_0) \ge q$. Since $f(S_0) \ge f(T_0)$, so $p \ge dq$, a contradiction. Thus Theorem 3 follows.

Both proofs of Lemma 2 in [4, 3] utilized Fan's lemma [5] applied to the boundary of the barycentric subdivision of *n*-cubes. The aim of this article is to present a proof for Lemma 2, which on one hand is a self-contained combinatorial proof, and on the other hand, further simplifies the proof presented in [3].

Our proof of Lemma 2, presented in the next two sections, is established by modifying a constructive proof for Fan's lemma given by Prescott and Su [19] to the desired special case, together with the labeling scheme used in [3]. The proof for the labeling scheme is further simplified and more straightforward than the one in [3]. In addition, our modification of the constructive proof in [19] corrects a minor error occurred in that paper.

2 Labeling of $\{0, 1, -1\}$ -vectors

We present a proof of the Fan's lemma [5] applied to the boundary of the first barycentric subdivision of the *n*-cubes. The proof is by modifying and specializing the constructive proof of Fan's lemma given by Prescott and Su [19].

Let *n* be a positive integer and $\mathcal{F}^n = \{0, 1, -1\}^n \setminus \{(0, 0, \dots, 0)\}$ be the family of vectors $A = (a_1, a_2, \dots, a_n)$, where each $a_i \in \{0, 1, -1\}$, and $a_j \neq 0$ for at least one *j*. A vector $A \in \mathcal{F}^n$ can also be expressed as $A = (A^+, A^-)$ where $A^+ = \{i : a_i = 1\}$ and $A^- = \{i : a_i = -1\}$. Let $|A| = |A^+| + |A^-|$. Notice that $A^+ \cap A^- = \emptyset$, and $|A| \ge 1$. For $A = (A^+, A^-), B = (B^+, B^-) \in \mathcal{F}^n$, we write $A \le B$ if $A^+ \subseteq B^+$ and $A^- \subseteq B^-$. If $A \le B$ but $A \ne B$, then A < B.

Let n, m be positive integers. Let λ be an *m*-labeling (mapping) from \mathcal{F}^n to $\{\pm 1, \pm 2, \ldots, \pm m\}$. We say λ is *anti-podal* if $\lambda(-X) = -\lambda(X)$ for all $X \in \mathcal{F}^n$. Two vectors $X, Y \in \mathcal{F}^n$ form a *complementary pair* if X < Y and $\lambda(X) + \lambda(Y) = 0$. In the

following, we assume that λ is an anti-podal labeling of \mathcal{F}^n without complementary pairs.

A non-empty subset σ of \mathcal{F}^n is called a *simplex* if the vectors in σ can be ordered as $A_1 < A_2 < \cdots < A_d$. Since $|A_d| \leq n$, if σ is a simplex, then $1 \leq |\sigma| \leq n$. Figure 2 shows an example of \mathcal{F}^3 .

Topologically, each vector $A \in \mathcal{F}^n$ is a point on the boundary of the *n*-dimensional cube (with a_i be the *i*th coordinate of the point), and a simplex σ defined above is the convex hull of the points in σ . Although our proof does not use the topological meaning of this concept, this topological background can be helpful in understanding the arguments.

Figure 2: Vertices and points in \mathcal{F}^3 , where each triangle is a simplex of three vertices. The boxed numbers (labels) show an example of a positive alternating simplex $\sigma : A_1 < A_2 < A_3$, where $A_1 = (1, 0, 0), A_2 = (1, -1, 0), A_3 = (1, -1, -1), \text{ and } \lambda(\sigma) = \{1, -2, 3\}.$

A simplex $\sigma = A_1 < A_2 < \cdots < A_d$ is alternating with respect to λ if the set $\lambda(\sigma) = \{\lambda(A_1), \lambda(A_2), \ldots, \lambda(A_d)\}$ of labels can be expressed either as $\{k_1, -k_2, k_3, \ldots, (-1)^{d-1}k_d\}$ or as $\{-k_1, k_2, -k_3, \ldots, (-1)^d k_d\}$, where $1 \leq k_1 < k_2 < \cdots < k_d \leq m$. In the former case, sign $(\sigma) = 1$ and σ is positive alternating; in the latter case, sign $(\sigma) = -1$ and σ is negative alternating.

A simplex σ is *almost-alternating* if it is not alternating, but the deletion of some element from σ results in an alternating simplex. Since there are no complementary pairs, every almost-alternating simplex contains exactly two elements such that the deletion of each of them from σ results in an alternating simplex. Moreover, both resulting alternating simplexes are of the same sign. This common sign is defined as $sign(\sigma)$.

The maximum non-zero index of a simplex, $\sigma = A_1 < \cdots < A_d$, is $\max(\sigma) = \max\{i : \text{the } i\text{-th term of } A_d \text{ is non-zero}\}$. Denote $\beta(\sigma)$ as the $(\max(\sigma))\text{-th term of } A_d$. An alternating or almost-alternating simplex σ is agreeable if $\beta(\sigma) = \operatorname{sign}(\sigma)$.

Lemma 4. [5] Assume $\lambda : \mathcal{F}^n \to \{\pm 1, \pm 2, \dots, \pm m\}$ is an anti-podal labeling without complementary pairs. Then there exist an odd number of positive alternating simplexes of size n. Consequently, $m \ge n$.

Figure 3 shows examples of Lemma 4 for n = m = 2.

Figure 3: There are 8 vectors (points) in \mathcal{F}^2 . In each (a) and (b), the numbers on the vectors form an anti-podal 2-labeling without complementary pairs. In (a) there is only one positive alternating simplex of size 2, namely uv, while in (b) there are three such simplexes.

Proof. Define a graph G with the following three types of simplexes σ as vertices. Type I: $\max(\sigma) = |\sigma| + 1$, and σ is agreeable alternating.

Type II: $\max(\sigma) = |\sigma|$, and σ is agreeable almost-alternating.

Type III: $\max(\sigma) = |\sigma|$, and σ is alternating.

Two vertices σ and τ are adjacent in G if all the following conditions are satisfied:

(1)
$$\sigma \subset \tau$$
, $|\sigma| = |\tau| - 1$

(2)
$$\sigma$$
 is alternating

- (3) $\beta(\tau) = \operatorname{sign}(\sigma)$, and
- $(4) \max(\tau) = |\tau|.$

Claim 1. All vertices in G have degree 2, except that Type III vertices with $|\sigma| = 1$ or n have degree 1.

Proof. Let σ be a Type I vertex with $\max(\sigma) = |\sigma| + 1 = d$. By Conditions (1) and (4), a neighbor τ of σ must be a vertex of Type II or III and have $\max(\tau) = |\tau| = d$.

Since $|\sigma| + 1 = \max(\sigma)$, there exists a unique index $1 \leq j \leq d$ such that the elements of σ can be expressed as $A_1 < \cdots < A_{j-1} < A_{j+1} < \cdots < A_d$, where $|A_i| = i$ for all i.

If $1 \leq j < d$, then there exist two indices $1 \leq t, r \leq d$ such that the *t*-th and the *r*-th terms are non-zero in A_{j+1} (denoted by a_t and a_r , respectively), but zero in A_{j-1} (or A_{j-1} does not exist in case j = 1). Let $\tau_1 = \sigma \cup A_j$ and $\tau_2 = \sigma \cup A'_j$, where A_j (or A'_j , respectively) is obtained by replacing the *t*-th (or *r*-th, respectively) term of A_{j+1} by 0. Since σ is agreeable alternating and there are no complementary pairs, each of τ_1 and τ_2 is a Type II or III vertex, and they are the only neighbors of σ in G.

If j = d, then $\sigma = A_1 < \cdots < A_{d-1}$, and $|A_i| = i$. Since $\max(\sigma) = d$, there exists a unique index $1 \leq t < d$ such that the *t*-th term of all elements of σ is 0. Hence, the only two neighbors of σ are $\tau : A_1 < \cdots < A_{d-1} < A_d$, where A_d is either $(A_{d-1}^+ \cup \{t\}, A_{d-1}^-)$ or $(A_{d-1}^+, A_{d-1}^- \cup \{t\})$. Similar to the above discussion, each τ is a Type II or III vertex.

Let σ be a Type II vertex. By (1) and (2), its neighbors τ must be alternating simplexes obtained from σ by deleting one element. Since σ is almost-alternating, there are exactly two elements such that the deletion of each from σ results in an alternating simplex. Since σ is agreeable, each of these two resulted alternating simplexes τ is either a vertex of Type I (if max(τ) = max(σ)) or a vertex of Type III (if max(τ) = max(σ) – 1). Both are neighbors of σ .

Let σ be a Type III vertex. By (1), a neighbor τ of σ has $|\tau| = |\sigma| \pm 1$. Of course, if $|\sigma| = 1$, then no neighbor τ of σ has $|\tau| = |\sigma| - 1$; if $|\sigma| = n$, then no neighbor τ of σ has $|\tau| = |\sigma| + 1$. Now we show that if $|\sigma| \ge 2$ (respectively, $|\sigma| \le n - 1$) then σ has exactly one neighbor τ with $|\tau| = |\sigma| - 1$ (respectively, with $|\tau| = |\sigma| + 1$).

Assume $|\sigma| \ge 2$. If σ is agreeable, then delete the element of σ with the maximum absolute label in $\lambda(\sigma)$. If σ is not agreeable, then delete the element with the minimum absolute label in $\lambda(\sigma)$. For each of the two cases, if the resulted simplex τ has $\max(\tau) = \max(\sigma)$, then τ is agreeable (since σ is agreeable) so it is a vertex of Type I. If τ has $\max(\tau) = \max(\sigma) - 1$, then τ is a vertex of Type III. In both cases, τ is a neighbor of σ . By (2) and (3), the deletion of any other element from σ is not a neighbor of σ .

Now consider $|\sigma| \leq n-1$. Denote $\sigma = A_1 < A_2 < \ldots < A_d$, where $d \leq n-1$ and $A_d = (a_1, \ldots, a_d, 0, \ldots, 0)$. Let $A_{d+1} = (a_1, \ldots, a_d, \operatorname{sign}(\sigma), 0, \ldots, 0)$. Then $\tau = A_1 < \cdots < A_d < A_{d+1}$ is a vertex of Type II or III, and is a neighbor of σ . By (3) and (4), τ is the only neighbor of σ with an additional element.

In conclusion, each Type III vertex has degree 2 if $2 \leq d \leq n-1$, and degree 1 if d = 1, n. This completes the proof of Claim 1.

By Claim 1, G is a union of disjoint paths and cycles. The vertices of degree 1 are $\{(1, 0, \ldots, 0)\}, \{(-1, 0, \ldots, 0)\}$, and all alternating simplexes of size n. For each path $P = (\sigma_1, \sigma_2, \ldots, \sigma_t)$ in G, its negation $-P = (-\sigma_1, -\sigma_2, \ldots, -\sigma_t)$ is also a path in G. Here $-\sigma_i$ is the set obtained from σ_i by negating each of its elements. Observe that $P \neq -P$, for otherwise, we must have $\sigma_t = -\sigma_1, \sigma_{t-1} = -\sigma_2$, and eventually we get either $\sigma_i = -\sigma_i$ or $\sigma_{i+1} = -\sigma_i$. Both are impossible. Hence the paths in G come in

pairs, resulting in an even number of paths in G. So G has 4r vertices of degree 1, for some $r \ge 1$. Thus there are 4r - 2 alternating simplexes of size n. Observe that if σ is a positive alternating simplex, then $-\sigma$ is a negative alternating simplex. Hence there are 2r - 1 positive alternating simplexes of size n. This completes the proof for Lemma 4.

Note that without Condition (4) in the above proof, Claim 1 does not hold. However, this condition was missing in the proof presented in [19], but was added in [26].

3 Proof of Lemma 2

We prove Lemma 2 by the same labeling used in [3]. However, the argument is further simplified. Let c be a proper (n - 2k + 2)-coloring of KG(n, k) using colors from the set $\{2k - 1, 2k, \ldots, n\}$. For a subset A of [n] with $|A| \ge k$, let

$$c(A) = \max\{c(U) \colon U \subseteq A, |U| = k\}.$$

Let \prec be an arbitrary linear ordering of $2^{[n]}$ such that if |X| < |Y|, then $X \prec Y$. Let λ be a labeling from \mathcal{F}^n to $\{\pm 1, \pm 2, \ldots, \pm n\}$ defined by:

$$\lambda(A) = \begin{cases} |A|, & \text{if } |A| \leq 2k - 2 \text{ and } A^- \prec A^+; \\ -|A|, & \text{if } |A| \leq 2k - 2 \text{ and } A^+ \prec A^-; \\ c(A^+), & \text{if } |A| \geq 2k - 1 \text{ and } A^- \prec A^+; \\ -c(A^-), & \text{if } |A| \geq 2k - 1 \text{ and } A^+ \prec A^-. \end{cases}$$

Notice that if $|A| \ge 2k - 1$, then $|A^+| \ge k$ or $|A^-| \ge k$. Hence, λ is well-defined. Apparently, λ is anti-podal. Suppose there exists a complementary pair X < Y with $\lambda(X) = -\lambda(Y)$. That is, $X = (X^+, X^-)$ and $Y = (Y^+, Y^-)$, where $X^+ \subseteq Y^+$, $X^- \subseteq Y^-$, and it is not the case that $X^+ = Y^+$ and $X^- = Y^-$. As X < Y, so |X| < |Y|. Assume $\lambda(X) > 0$. (The other case is similar.) By definition of λ , it must be $|X|, |Y| \ge 2k - 1$. Therefore, there exist $A, B \subseteq [n]$ such that |A| = |B| = k, $A \subseteq X^+ \subseteq Y^+$, $B \subseteq Y^-$, and c(A) = c(B), which is impossible as $A \cap B = \emptyset$ (since $Y^+ \cap Y^- = \emptyset$). Thus there are no complementary pairs. By Lemma 4, there are an odd number of positive alternating simplexes of size n.

Claim 2. Assume $\sigma : X_1 < X_2 < \cdots < X_n$ is a positive alternating simplex with respect to λ . Then $|X_{2k-2}^+| = |X_{2k-2}^-| = k - 1$, and [n] can be partitioned as $[n] = X_{2k-2}^+ \cup X_{2k-2}^- \cup \{a_{2k-1}, a_{2k}, \ldots, a_n\}$, where

$$c(X_{2k-2}^+ \cup \{a_{2k-1}, a_{2k+1}, \dots, a_j\}) = j, \text{ if } j \text{ is odd}; c(X_{2k-2}^- \cup \{a_{2k}, a_{2k+2}, \dots, a_j\}) = j, \text{ if } j \text{ is even.}$$

Proof. By assumption, $\lambda(\sigma) = \{1, -2, \dots, (-1)^{n-1}n\}$. So, $|X_i| = i$ for $1 \le i \le n$. By definition of λ , $\lambda(X_i) = (-1)^{i-1}i$ for $1 \le i \le 2k-2$, $|X_{2k-2}^+| = |X_{2k-2}^-| = k-1$, and $\lambda(\{X_{2k-1}, \dots, X_n\}) = \{2k-1, -2k, \dots, (-1)^{n-1}n\}$. Let $q = \lceil \frac{n-2k+2}{2} \rceil$ and $q' = \lfloor \frac{n-2k+2}{2} \rfloor$. The set $\lambda(\{X_{2k-1}, \dots, X_n\})$ consists of q

Let $q = \lfloor \frac{n-2k+2}{2} \rfloor$ and $q' = \lfloor \frac{n-2k+2}{2} \rfloor$. The set $\lambda(\{X_{2k-1}, \ldots, X_n\})$ consists of q positive labels and q' negative labels. By the definition of λ , if $\lambda(X_i)$ is positive (respectively, negative), X_i is obtained from X_{i-1} by adding one element to X_{i-1}^+ (respectively, to X_{i-1}^-). Thus when i changes from 2k - 1 to n, the sets X_i^+ (respectively, X_i^-) changed q times (respectively, q' times), each time a new element is added. Since the positive (respectively, negative) labels in $\lambda(\{X_{2k-1}, \ldots, X_n\})$ are $\{2k-1, 2k+1, \ldots, 2(k+q-1)-1\}$ (respectively, $\{-2k, -(2k+2), \ldots, -(2(k+q'-1))\}\}$), by the monotonicity of c, each time when a new element is added to X_i^+ (or X_i^- , respectively), the value of $c(X_i^+)$ (or $c(X_i^-)$) increases by 2. Therefore $\{2k-1, 2k, \ldots, n\}$ is partitioned into $I = \{j_1 < j_2 < \ldots < j_q\}$ and $I' = \{j'_1 < j'_2 < \ldots < j'_{q'}\}$ such that $\lambda(X_{j_t}) = c(X_{j_t}^+) = 2k - 2 + 2t - 1$ and $\lambda(X_{j_t}') = -c(X_{j_t}^-) = -(2k - 2 + 2t)$. Moreover $X_{j_t}^+$ is obtained from $X_{j_{t-1}}^+$ by adding one element, and $X_{j_t}^-$ is obtained from $X_{j_{t-1}}^-$ by adding one element. So Claim 2 follows.

Let Γ be the family of vectors X with $|X^+| = |X^-| = k - 1$. By Claim 2, each positive alternating simplex of size n contains exactly one element in Γ . For $W \in \Gamma$, let $\alpha(W, \lambda)$ be the number of positive alternating simplexes of size n with respect to λ , containing W as an element. By Lemma 4, $\sum_{X \in \Gamma} \alpha(X, \lambda)$ is odd. Hence there exists $Z \in \Gamma$ such that $\alpha(Z, \lambda)$ is odd. Let $\sigma : X_1 < X_2 < \cdots < X_n$ be a positive alternating simplex with respect to λ , where $Z = X_{2k-2}$. Let $Z = (Z^+, Z^-) = (S, T)$.

Define $\lambda' : \mathcal{F}^n \to \{\pm 1, \pm 2, \dots, \pm n\}$ by

$$\lambda'(X) = \begin{cases} -\lambda(X), & \text{if } X \in \{Z, -Z\}; \\ \lambda(X), & \text{otherwise.} \end{cases}$$

Similar to λ , λ' is also anti-podal without complementary pairs. Moreover, Claim 2 holds for λ' . By Lemma 4, $\sum_{X \in \Gamma} \alpha(X, \lambda')$ is odd. Since $\alpha(X, \lambda') = \alpha(X, \lambda)$ for $X \in \Gamma \setminus \{Z, -Z\}$, so $\alpha(Z, \lambda) + \alpha(-Z, \lambda) \equiv \alpha(Z, \lambda') + \alpha(-Z, \lambda') \pmod{2}$. Because $\lambda(-Z) = 2k - 2 = \lambda'(Z)$, we get $\alpha(-Z, \lambda) = \alpha(Z, \lambda') = 0$, implying $\alpha(-Z, \lambda') \equiv \alpha(Z, \lambda) \equiv 1 \pmod{2}$. Hence, there exists a positive alternating simplex $\tau : Y_1 < \cdots < Y_n$ with respect to λ' , where $Y_{2k-2} = -Z = (T, S)$. Apply Claim 2 to σ and τ , we obtain for $2k - 1 \leq i \leq n$:

$$c(S \cup \{a_{2k-1}, a_{2k+1}, \dots, a_i\}) = c(T \cup \{b_{2k-1}, b_{2k+1}, \dots, b_i\}) = i, \text{ for odd } i;$$

$$c(T \cup \{a_{2k}, a_{2k+2}, \dots, a_i\}) = c(S \cup \{b_{2k}, b_{2k+2}, \dots, b_i\}) = i, \text{ for even } i,$$

where $\{a_{2k-1}, a_{2k}, \dots, a_n\} = \{b_{2k-1}, b_{2k}, \dots, b_n\} = [n] \setminus (S \cup T).$

To complete the proof for Lemma 2, it remains to show: For any index $2k-1 \leq i \leq n$, it holds that $a_i = b_i$ and $c(S \cup \{a_i\}) = c(T \cup \{a_i\}) = i$. We verify this by induction

on *i*. Assume i = 2k - 1. As $c(S \cup \{a_{2k-1}\}) = c(T \cup \{b_{2k-1}\}) = 2k - 1$, so $S \cup \{a_{2k-1}\}$ and $T \cup \{b_{2k-1}\}$ are not adjacent, implying $a_{2k-1} = b_{2k-1}$. Similarly, it holds for i = 2k.

Assume $i \ge 2k+1$ and the result holds for j < i. If i is odd, as $S \cup \{a_i\}$ is adjacent to $T \cup \{a_j\}$ for all $2k-1 \le j < i$, it follows that $c(S \cup \{a_i\}) \ne c(T \cup \{a_j\}) = j$ for $2k-1 \le j < i$. Thus, $c(S \cup \{a_i\}) = i$, as $c(S \cup \{a_i\}) \le i$. Similarly, we get $c(T \cup \{b_i\}) = i$. Hence, $S \cup \{a_i\}$ and $T \cup \{b_i\}$ are not adjacent, implying $a_i = b_i$. The case for even i is obtained similarly. This completes the proof for Lemma 2.

Note that according to (1.1), Theorem 3 implies the Lovász-Kneser Theorem. Moreover, Lovász-Kneser Theorem can be derived directly from Lemma 4. Assume to the contrary, $\chi(\text{KG}(n,k)) \leq n-2k+1$. Let c be a proper coloring for KG(n,k) using colors from $\{2k-1, 2k, \ldots, n-1\}$. Let λ be the same labeling defined in our proof, except in this case λ is from \mathcal{F}^n to $\{\pm 1, \pm 2, \ldots, \pm (n-1)\}$, instead of to $\{\pm 1, \pm 2, \ldots, \pm n\}$. By the same argument, λ is anti-podal without complementary pairs, contradicting Lemma 4 (as n-1 < n).

Acknowledgment. The authors would like to thank the two anonymous referees for their suggestions, which resulted in better presentation of this article.

References

- N. Alon, P. Frankl, L. L. Lovász. The chromatic number of Kneser hypergraphs. Trans. Amer. Math. Soc., 298:359–370, 1986.
- [2] I Bárány. A short of Kneser's conjecture. J. Combin. Theory Ser. A, 25:325–326, 1978.
- [3] G. J. Chang, D. D.-F. Liu, and X. Zhu. A short proof for Chen's Alternative Kneser Coloring Lemma. J. Combin. Theory Ser. A, 120:159–163, 2013.
- [4] P.-A. Chen. A new coloring theorem of Kneser graphs. J. Combin. Theory Ser. A, 118(3):1062–1071, 2011.
- [5] K. Fan. A generalization of Tucker's combinatorial lemma with topological applications. Ann. of Math. (2), 56:431–437, 1952.
- [6] R. M. Freund and M. J. Todd. A constructive proof of Tucker's combinatorial lemma. J. Combin. Theory Ser. A, 30:321–325, 1981.
- [7] J. Greene. A new short proof of Kneser's conjecture. Amer. Math. Monthly, 109:918-920, 2002.
- [8] H. Hajiabolhassan and A. Taherkhani. Graph powers and graph homomorphisms. *Electron. J. Combin.* 17, no. 1, Research Paper 17, 16 pp., 2010.

- H. Hajiabolhassan and X. Zhu. Circular chromatic number of Kneser graphs. J. Combin. Theory Ser. B, 88(2):299–303, 2003.
- [10] A. Johnson, F. C. Holroyd, and S. Stahl. Multichromatic numbers, star chromatic numbers and Kneser graphs. J. Graph Theory, 26(3):137–145, 1997.
- [11] M. Kneser. Aufgabe 300. Jber. Deutsch. Math.-Verein., 58:27, 1955.
- [12] I. Kriz. Equivalent cohomology and lower bounds for chromatic numbers. Trans. Amer. Math. Soc., 333:567–577, 1992.
- [13] I. Kriz. A corretion to "Equivalent cohomology and lower bounds for chromatic numbers". Trans. Amer. Math. Soc., 352:1951–1952, 2000.
- [14] K.-W. Lih and D. D.-F. Liu. Circular chromatic numbers of some reduced Kneser graphs. J. Graph Theory, 41: 62–68, 2002.
- [15] L. Lovász. Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324, 1978.
- [16] J. Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer, 2003.
- [17] J. Matoušek. A combinatorial proof of Kneser's conjecture. Combinatorica, 24:163–170, 2004.
- [18] F. Meunier. A topological lower bound for the circular chromatic number of Schrijver graphs. J. Graph Theory, 49(4):257–261, 2005.
- [19] T. Prescott and F. Su. A constructive proof of Ky Fan's generalization of Tucker's lemma. J. Combin. Theory Ser. A, 111:257–265, 2005.
- [20] K. S. Sarkaria. A generalized Kneser conjecture. J. Combin. Theory Ser. B, 49:236–240, 1990.
- [21] A. Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., III. Ser, 26:454–461, 1978.
- [22] G. Simonyi and G. Tardos. Local chromatic number, Ky Fan's theorem and circular colorings. *Combinatorica*, 26(5):587–626, 2006.
- [23] A. W. Tucker. Some topological properties of disk and sphere. Proc. First Canadian Math. Congr., Montreal, Toronto Press, 285–309, 1946.
- [24] X. Zhu. Circular chromatic number: a survey. Discrete Math., 229(1-3):371–410, 2001.

- [25] X. Zhu. Recent developments in circular colouring of graphs. Topics in discrete mathematics, 26: 497–550, Algorithms Combin., Springer, Berlin, 2006.
- [26] X. Zhu. Circular coloring and flow. Lecture note, 2012.
- [27] G. Ziegler. Generalized Kneser coloring theorems with combinatorial proofs. Invent Math., 147:671–691, 2002.