References Cited within Themes T1 to T3


Theme T1 References

[107] J.H. Lee, L. Fang, E. Vlahos, X.L. Ke, Y.W. Jung, L.F. Kourkoutis, J.W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, “A strong ferroelectric ferromagnet created by means of spin–lattice coupling,” Nature 466, 954-958 (2010).
[108] P.J. Ryan, J.W. Kim, T. Birol, P. Thompson, J.H. Lee, X. Ke, P.S. Normile, E. Karapetrova, P. Schiffer, S.D. Brown, C.J. Fennie, and D. G. Schlom, “Reversible control of magnetic interactions by electric field in a single-phase material,” Nat. Commun. 4, 1334 (2013).
[109] Yusuke Tokunaga, Nobuo Furukawa, Hideaki Sakai, Yasujiro Taguchi, Taka-hisa Arima, and Yoshinori Tokura, “Composite domain walls in a multiferroic perovskite ferrite,” Nature Materials 8, 558 (2009).
[110] R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh, “A Strain-Driven Morphotropic Phase Boundary in BiFeO3,” Science 326, 977-980 (2009).
[111] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature 456, 55 (2003).
[112] Y. Moritomo, H. Kuwahara, Y. Tomioka, and Y. Tokura, “Pressure effects on charge-ordering transitions in Perovskite manganites,” Physical Review B 55, 7549 (1997).
[113] Y. M. Xiong, G. Y. Wang, X. G. Luo, C. H. Wang, X. H. Chen, X. Chen, and C. L. Chen, “Magnetotransport properties in La1−xCaxMnO3 (x=0.33, 0.5) thin films deposited on different substrates,” J.
Appl. Phys. 97, 083909 (2005).
[114] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, “Current switching of resistive states in magnetoresistive manganites,” Nature 388, 50 (1997).
[115] M. Fiebig, K. Miyano, Y. Tomioka, and Y. Tokura, “Visualization of the Local Insulator-Metal Transition in Pr0.7Ca0.3MnO3,” Science 280, 1925 (1998).
[116] Guo-meng Zhao, K. Conder, H. Keller, and K. A. Müller, “Giant oxygen isotope shift in the magnetoresistive perovskite La1-xCaxMnO3+y,” Nature (London) 381, 676 (1996).
[117] F. Millange, V. Caignaert, B. Domenge`s, and B. Raveau, “Order−Disorder Phenomena in New LaBaMn2O6-x CMR Perovskites. Crystal and Magnetic Structure,” Chem. Mater. 10, 1974 (1998).
[118] D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, and Y. Tokura, “Random Potential Effect near the Bicritical Region in Perovskite Manganites as Revealed by Comparison with the Ordered Perovskite Analogs,” Physical Review Letters 90, 177203 (2003).
[119] Guo-meng Zhao, K. Ghosh, H. Keller, and R. L. Greene, “Very strong magnetic-field dependence of the oxygen isotope shift of the charge-ordering transition in La0.5Ca0.5MnO3,” Physical Review B 59, 81 (1999).
[120] Guo-meng Zhao, K. Ghosh, and R. L. Greene, “Colossal oxygen isotope shift of the charge-ordering transition in Nd0.5Sr0.5MnO3,” J. Phys.: Condens. Matter 10, L737 (1998).
[121] W. C. Kerr, A. M. Hawthorne, R. J. Gooding, A. R. Bishop, and J. A. Krumhansl, “First-order displacive structural phase transitions studied by computer simulation,” Physical Review B 45, 7036 (1992).
[122] K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocalori materials,” Rep. Prog. Phys. 68, 1479 (2005).
[123] M. R. Ibarra, Guo-meng Zhao, J. M. De Teresa, B. García-Landa, Z. Arnold, C. Marquina, P. A. Algarabel, H. Keller, and C. Ritter, “Oxygen isotope effects in (La0.5Nd0.5)2/3Ca1/3MnO3: Relevance of the electron-phonon interaction to the phase segregation,” Physical Review B 57, 7446 (1998).
[124] G. Allodi, R. De Renzi, G. Guidi, F. Licci, and M. W. Pieper, “Electronic phase separation in lanthanum manganites: Evidence from 55Mn NMR,” Physical Review B 56, 6036 (1997).
[125] A. I. Coldea, S. J. Blundell, C. A. Steer, J. F. Mitchell, and F. L. Pratt, “Spin freezing and magnetic inhomogeneities in bilayer manganites,” Physical Review Letters 89, 277601 (2002).
[126] Schenck, Alexander, “Muon spin rotation spectroscopy," Bristol UK (1985).
[127] E. Morenzoni, T. Prokscha, A. Suter, H. Luetkens, and R. Khasanov, “Nano-scale thin film investigations with slow polarized muons,” J. Phys.: Condens. Matter 16 S4583–S4601 (2004).
[128] K. M. Kojima, Y. Krockenberger, I. Yamauchi, M. Miyazaki, M. Hiraishi, A. Koda, R. Kadono, R. Kumai, H. Yamamoto, A. Ikeda, and M. Naito; “Bulk superconductivity in undoped T’-La1.9Y0.1CuO4 probed by muon spin rotation,” Physical Review B 89, R180508 (2014).
[129] O. O. Bernal, D. E. MacLaughlin, H. G. Lukefahr and B. Andraka, “Copper NMR and Thermodynamics of UCu5-xPdx: Evidence for Kondo Disorder,” Physical Review Letters 75, 2023 (1995).
[130] Lei Shu, D. E. MacLaughlin, C. M. Varma, O. O. Bernal, P.-C. Ho, R. H. Fukuda, X. P. Shen, and M. B. Maple, “Landau Renormalizations of Superfluid Density in the Heavy-Fermion Superconductor CeCoIn5,Physical Review Letters 113, 166401 (2014).
[131] Nicola A. Spaldin, Sang-Wook Cheong, and Ramamoorthy Ramesh, “Multiferroics: Past, present, and future,” Physics Today 63 10, 38-43 (2010).
[132] P. Yu, J.-S. Lee, S. Lee, S. Okamoto, M.D. Rosell, M. Huijben, C.-H. Yang, Q. He, J.X. Zhang, S.Y. Yang, M.J. Lee, Q.M. Ramasse, R. Erni, Y.-H. Chu, D.A. Arena, C.-C. Kao, L.W. Martin and R. Ramesh, “Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Ca0.3MnO3 Heterostructures", Physical Review Letters 105, 027201 (2010).
[133] Y.M. Shue, S.A. Trugman, L. Yan, J. Qi, Q.X. Jia, A.J. Taylor, and R.P. Prasankumar, “Polaronic Transport Induced by Competing Interfacial Magnetic Order in La0.7Ca0.3MnO3 BiFeO3 Heterostructure", Physical Review. X 4, 021001 (2014).
[134] J. P. Rodriguez and E. Artacho, “Metallic Surface Reconstruction Driven by Frustrated Antiferromagnetism,” Physical Review B 59, R705 (1999).
[135] R. A. Jishi and Douglas Scalapino, “Contribution of the electron-phonon coupling to the pairing interaction in LiFeAs,” Physical Review B 88, 184505 (2013).
[136] Guo-meng Zhao and John Mann, “Unusual temperature dependence of the oxygen-isotope effect on the exchange-energy of La1-xCaxMnO3 at high temperatures,” Physical Review B (Rapid Communications) 77, 100406R (2008).
[137] Jun Wang, Victor Aguilar, Le Li, Fa-gen Li, Wen-zhong Wang, and Guo-meng Zhao, “Strong shape dependence of the Morin transition in single-crystalline -Fe2O3 nanostructures,” Nano Research (in press).
[138] Jun Wang, Hongyan Duan, Xiong Lin, Victor Aguilar, Aaron Mosqueda, and Guo-meng Zhao, “Temperature dependence of magnetic anisotropy constant in iron chalcogenide Fe3Se4: Excellent agreement with theories,” J. Appl. Phys. 112, 103905 (2012).
[139] Victor Aguilar, Carlos Sanchez, Oscar Bernal, and Guo-meng Zhao “Magnetic and thermal properties of the oxygen-isotope exchanged single-crystalline Nd0.5Sr0.5MnO3,” (unpublished).
[140] J. López and O. F. de Lima, “Specific heat and magnetic properties of Nd0.5Sr0.5MnO3 and R0.5Ca0.5MnO3 (R=Nd, Sm, Dy, and Ho),” J. Appl. Phys. 94, 4395 (2003).

Theme T2 References

[141] Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; van de Krol, R. “Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move,” Angew. Chem. Int. Ed. 2013, 52, 10426 -10437.
[142] Zhao, Y.; Swierk, J. R.; Jr, J. D. M.; Sherman, B.; Youngblood, W. J.; Qin, D.; Lentz, D. M.; Moore, A. L.; Moore, T. A.; Gust, D.; Mallouk, T. E. “Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator,” Proc. Natl. Acad. Sci. USA 2012, 109, 15612-15616.
[143] Najafpour, M. M.; Govindjee “Oxygen evolving complex in Photosystem II: Better than excellent,” Dalton Trans. 2011, 40, 9076-9084.
[144] Armstrong, F. A. “Why did Nature choose manganese to make oxygen?” Phil. Trans. R. Soc. B 2008, 363, 1263-1270.
[145] Brudvig, G. W. “Water oxidation chemistry of photosystem II,” Phil. Trans. R. Soc. B 2008, 363, 1211- 1219.
[146] Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. “Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9A˚,” Nature 2011, 473, 55.
[147] Kamiya, N.; Shen, J.-R. “Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution,” Proc. Natl. Acad. Sci. USA 2003, 100, 98-103
[148] Cushing, B. L.; Kolesnichenko, V. L.; Oconnor, C. J. “Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles,” Chem. Rev. 2004, 104, 3893-3946.
[149] Neumann, R.; Gara, M. “Highly Active Manganese-Containing Polyoxometalate as Catalyst for Epoxidation of Alkenes with Hydrogen Peroxide,” J. Am. Chem. Soc. 1994, 116, 5509-5510.
[150] Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. “A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals,” Science 2010, 328, 342.
[151] Jiang, D.; Ma, X.; Darabedian, N.; Zhou, F. “Extracting and characterizing Mn4O5Ca clusters stabilized by small organic ligands,” J. Am. Chem. Soc. 2015, in preparation.
[152] Swierk, J. R.; McCool, N. S.; Saunders, T. P.; Barber, G. D.; Mallouk, T. E. Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells, J. Am. Chem. Soc. 2014, 136, 10974-10982.
[153] Djurovich, P. I.; Murphy, D.; Thompson, M. E.; Hernandez, B.; Gao, R.; Hunt, P. L.; Selke, M. Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures, Dalton Trans. 2007, 3763-3770.
[154] Ashen-Garry, D.; Selke, M. Singlet Oxygen Generation by Cyclometalated Complexes and Applications,” Photochem. Photobiol. 2014, 90, 257-274.
[155] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M. v.; Walsh, A. “Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells,” Nano Lett. 2014, 14, 2584-2590.
[156] Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. “Steric engineering of metal-halide perovskites with tunable optical band gaps,” Nat. Commun. 2014, 5, doi:10.1038.
[157] Cui, Y.; Briscoe, J.; Dunn, S. “Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3 Influence on the Carrier Separation and Stern Layer Formation,” Chem. Mater. 2013, 25, 2013, 25, 4215-4223.
[158] Mulder, A. T.; Benedek, N. A.; Rondinelli, J. M.; Fennie, C. J. “Turning ABO3 Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation-Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden-Popper Compounds,” Adv. Funct. Mater. 2013, 38, 4810-4820.
[159] Cohen, R. E. “Origin of ferroelectricity in perovskite oxides: The principal problems from a theoretical perspective,” Ferroelectrics 1993, 150, 1-12.
[160] Zeches, R. J.; Rossell, M. D.; Zhang, J. X.; Hatt, A. J.; He, Q.; Yang, C. H.; Kumar, A.; Wang, C. H.; Melville, A.; Adamo, C.; Sheng, G.; Chu, Y. H.; Ihlefeld, J. F.; Erni, R.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; R. Ramesh, “A Strain-Driven Morphotropic Phase Boundary in BiFeO3,” Science 2009, 326, 977-980.
[161] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 2013, 13, 1764-1769.
[162] Yin, W.-J.; Tang, H.; Wei, S.-H.; Al-Jassim, M. M.; Turner, J.; Yan, Y. “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2,” Phys. Rev. B 2010, 82, 045106.
[163] Jishi, R.; Ta, O.; Sharif, A. “Modeling of Lead Halide Perovskites for Photovoltaic Applications,” J. Phys. Chem. C 2014, arXiv:1045.1706v2, In press.
[164] Gopalan, V.; Litvin, D. B. “Rotation-reversal symmetries in crystals and handed structures,” Nat. Mater. 2011, 10, 376-381.
[165] Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; J. F. Mitchell “Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO3-Type Phase of FeTiO3,” Physical Review Letters 2009, 103, 047601.
[166] Jiang, D.; Hao, Y.; Shen, R.; Ghazarian, S.; Ramos, A.; Zhou, F. “Effective blockage of the interfacial recombination process at TiO2 nanowire array electrodes in dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 2013, 5, 11906-11912.

Theme T3 References

[167] Sengupta, S.; Patra, D.; Ortiz-Rivera, I.; Agrawal, A.; Shklyaev, S.; Dey, K. K.; Córdova-Figueroa, U.; Mallouk, T. E.; Sen, A. “Self-powered enzyme micropumps,” Nature Chemistry 2014, 6, 415–422.
[168] Baraban, L.; Harazim, S. M.; Sanchez, S.; Schmidt, O. G. “Chemotactic behavior of catalytic motors in microfluidic channels,” Angew. Chem. Int. Ed. Engl. 2013, 52, 5552-5556.
[169] Dey, K. K.; Das, S.; Poyton, M. F.; Sengupta, S.; Butler, P. J.; Cremer, P. S.; Sen, A. “Chemotactic separation of enzymes,” ACS Nano, 2014, 8, 11941-11949.
[170] Mei, Y., Solovev, A. A., Sanchez, S. & Schmidt, O. G. “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40, 2109–2119 (2011).
[171] Zhang, H.; Duan, W.; Lu, M.; Zhao, X.; Shklyaev, S.; Liu, L.; Huang, T. J.; Sen, A. “Self-powered glucoseresponsive micropumps,” ACS Nano, 2014, 8, 8537-8542.
[172] Sengupta, S.; Spiering, M. M.; Dey, K. K.; Duan, W.; Patra,, D.; Butler, P. J.; Astumian, D.; Benkovic, S. J.; Sen, A. “DNA polymerase as a molecular motor and pump,” ACS Nano, 2014, 8, 2410-2418.
[173] Pavlick, R. A.; Key, K. K.; Sirjoosingh, A.; Benesi, A.; Sen, A. “A catalytically-driven organometallic molecular motor,” Nanoscale, 2013, 5, 1301-1304.
[174] Sengupta, S.; Key, K. K.; Muddana, H. S.; Tabouillot, T.; Ibele, M. E.; Butler, P. J.; Sen, A. “Enzyme molecules as nanomotors,” J. Am. Chem. Soc. 2013, 135, 1406-1414.
[175] Pumera, M. “Nanomaterials meet microfluidics,” Chem. Commun. 2011, 47, 5671–5680.
[176] Sengupta, S.; Ibele, M. E.; Sen, A. “Fantastic voyage: designing self-powered nanobots,” Angew. Chem., Int. Ed., 2012, 51, 8434-8445.
[177] Duan, W.; Ibele, M.; Liu, R.; Sen, A. “Motion analysis of light-powered autonomous silver chloride nanomotors,” Eur. Phys. J. E, 2012, 35, 77.
[178] Pavlick, R. A; Sengupta, S.; McFadden, T.; Zhang, H.; Sen, A. “A polymerization-powered motor,” Angew. Chem., Int. Ed., 2011, 50, 9374.
[179] Balk, A.; Mair, L.; Mathai, P.; Patrone, P.; Wang, W.; Ahmed, S.; Mallouk, T.; Liddle, J. A.; Stavis, S. ACS “Kilohertz rotation of nanomotors propelled by ultrasound traced by microvortex advection of nanoparticles,” Nano, 2014, 8, 8300-8309.
[180] Ahmed, S.; Wang, W.; Mair, L. O.; Fraleigh, R. D.; Li, S.; Castro, L. A.; Hoyos, M.; Huang, T. J.; Mallouk, T. E. “Steering acoustically propelled nanowire motors towards cells in a biologically compatible environment using magnetic fields,” Langmuir, 2013, 29, 16113-16118.
[181] Wang, W.; Chiang, T.-Y.; Velegol, D.; Mallouk, T. E. “Understanding the efficiency of autonomous nanoand microscale motors,” J. Am. Chem. Soc. 2013, 135, 10557-65.
[182] Elias, A. L.; Perea-Lopez, N.; Castro-Beltran, A.; Berkdemir, Y.; Lv, R.; Feng, S.; Long, A.; Hayashi, T.; Kim, Y. A.; Endo, M.; Gutierrez, H.; Pradhan, N.; Balicas, L.; Mallouk, T.; Lopez-Urias, F.; Terrones, H.; Terrones, M., "Controlled synthesis and transfer of large area WS2 sheets: from single-layer to few-layers,” ACS Nano, 2013, 7, 5235-5242.
[183] W. Wang, L. A. Castro, M. Hoyos, and T. E. Mallouk. “Autonomous motion of metallic microrods propelled by ultrasound,” ACS Nano 2012, 6, 6122-6132.
[184] Kim, J. Y.; DeRocher, J. P.; Mao, P.; Han, J.; Cohen, R. E.; Rubner, M. F. “Formation of nanoparticlecontaining multilayers in nanochannels via layer-by-layer assembly.” Chem. Mater. 2010, 22, 6409-6415.
[185] DeRocher, J. P.; Mao, P.; Han, J.; Rubner, M. F.; Cohen, R. E. “Layer-by-layer assembly of polyelectrolytes in nanofluidic devices.” Macromolecules 2010, 43, 2430-2437.
[186] DeRocher, J. P.; Mao, P.; Kim, J. Y.; Han, J.; Rubner, M. F.; Cohen, R. E. “Layer-by-layer deposition of all-nanoparticle multilayers in confined geometries.” ACS Appl. Mater. Interfaces. 2012, 4, 391-396.
[187] Lee, S. W.; Kim, B. –S.; Chem, S.; Shao-Horn, Y.; Hammond, P. T. “Lalyer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications.” J. Am. Chem. Soc. 2009, 131, 671-679.
[188] Decher, G. “Fuzzy nanoassemblies: Toward layered polymeric multicomposites.” Science 1997, 277, 1232-1237.
[189] Burg, T. P.; Godin, M.; Knudsen, S. M.; Shen, W.; Carlson, G.; Foster, J. S.; Babcock, K.; Manalis, S. R. “Weighing of biomolecules, single cells and single nanoparticles in fluid.” Nature 2007, 446, 1066-1069.
[190] Lee, H.; Sun, E.; Ham, D. “Chip-NMR biosensor for detection and molecular analysis of cells.” Nature Medicine 2008, 14, 869-874.
[191] Whitesides, G. M. “The origins and future of microfluidics.” Nature 2006, 442, 368-373.
[192] Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. “Nanotube molecular wires as chemical sensors.” Science 2000, 287, 622–625.
[193] Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. “Extreme oxygen sensitivity of electronic properties of carbon nanotubes.” Science 2000, 287, 1801–1804.
[194] Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. “Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors.” J. Am. Chem. Soc. 2001, 123, 11512–11513.
[195] Pantarotto, D.; Browne, W. R.; Feringa, B. L. “Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.” Chem. Commun., 2008, 1533–1535.
[196] Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312, 1034–1037.
[197] Smajda, R.; Kukovecz, A.; Konya, Z.; Kiricsi, I. “Structure and gas permeability of multi-wall carbon nanotube buckypapers.” Carbon 2007, 45, 1176–1184.
[198] Landi, B. J.; Raffaelle, R. P.; Heben, M. J.; Alleman, J. L.; VanDerveer, W.; Gennett, T. “Single wall carbon nanotube-nafion composite actuators.” Nano Letters 2002, 2, 1329–1332.
[199] Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A. “Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites.” Nat. Mater. 2002, 1, 190–194.
[200] Lee, S.W.; Kim, B. –S.; Chen, S.; Shao-Horn, Y.; Hammond, P.T. “Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical Applications.” J. Am. Chem. Soc., 2009, 131, 671–679.
[201] Seo, J.; Lee, T. J.; Ko, S.; Yeo, H.; Kim, S.; Noh, T.; Song, S.; Sng, M. M.; Lee, H. “Hierarchical and multifunctional three-dimensional network of carbon nanotubes for microfluidic applications.” Adv. Mater. 2012, 24, 1975–197.
[202] Goldberg, M. D.; Lo, R. C.; Abele, S.; Macka, M.; Gomez, F. A. “Development of microfluidic chips for heterogeneous receptor-ligand interaction studies.” Anal. Chem. 2009, 81, 5095-5098.
[203] Liu, X.; Lo, R.; Gomez, F. A. “Fabrication of a microfluidic enzyme reactor utilizing magnetic beads.” Electrophoresis, 2009, 30, 2129-2133.
[204] Gaspar, A.; Bacsi, I.; Garcia, E. F.; Braun, M.; Gomez, F. A. “Application of external microspectrophotometric detection for microchips.” Anal. Bioanal. Chem. 2009, 395, 473-478.
[205] Riveros, T. A.; Lo, R.; Liu, X.; Valdez, A.; Lozano, M.; Gomez, F. A. “Use of magnetic beads in microfluidic binding assays and on-chip enzymatic microreactions.” Am. Lab. 2010, 42, 11-19.
[206] Gaspar, A.; Salgado, M.; Stevens, S.; Gomez, F. A. “Microfluidic thin chips for chemical separations.” Electrophoresis 2010, 31, 2520-2525.
[207] Gáspár, A.; Koczka, P. I.; Carmona, H.; Gomez, F. A. “Split Injection: A simple introduction of subnanoliter sample volumes for chip electrophoresis.” Microchemical J. 2011, 99, 180-185.
[208] Yun, Y.; Lee, S.; Collins, B.; Gomez, F. A. Sankar, J. “Human-on-a-chip technologies as the next generation drug screening platforms.” J. Nanomedic. Biotherapeu. Discovery 2012, 2, 1000e113.
[209] Moraes, F.; Lima, R.; Segato, T.; Cesarino, T.; Melendez, J.; Machado, S.; Gomez, F. A.; Carrilho, E. “Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs for electrochemical determination.” Lab Chip, 2012, 12, 1959-1962.
[210] Alvarado, J.; Hanrahan, G.; Nguyen, H. T. H.; Gomez, F. A. “Implementation of a genetically tuned neural platform in optimizing fluorescence from receptor-ligand binding interactions on microchips.” Electrophoresis, 2012, 33, 2711-2717.
[211] Gomez, F. A. “The future of microfluidic point-of-care (POC) diagnostic devices.” Bioanalysis, 2013, 5, 1-3.
[212] Chong, H.; Koo, Y.; Collins, B.; Gomez, F. A. Sankar, J.; Yun, Y. “Paper-based microfluidic point-of-care diagnostic devices for monitoring drug metabolism.” J. Nanomedic. Biotherapeu. Discovery 2013, 3, e122.
[213] Ferrer, I. M.; Valadez, H.; Estala, L.; Gomez, F. A. “Paper microfluidic-based enzyme catalyzed double microreactor.” Electrophoresis, 2014, 35, 2417-2419.
[214] Ortega, M.; Hanrahan, G.; Arceo, M.; Gomez, F. A. “Application of a computational neural network to optimize the fluorescence from a receptor-ligand interaction on a microfluidic chip.” Electrophoresis, 2015, doi: 10.1002/elps.201400288.
[215] Gomez, F. A. “Paper Microfluidics in bioanalysis. Bioanalysis,” 2014, 6, 2911-2914.
[216] Carmona, H.; Valadez, H.; Yun, Y.; Estala, L.; Gomez, F. A. “Development of microfluidic-based assays to estimate the binding between osteocalcin and Fluorescent Antibodies.” Talanta, 2015, 132, 676-679.
[217] Arrastia, M.; Avoundjian, A.; Ehrlich, P. S.; Eropkin, M.; Levine, L.; Gomez, F. A. Electrophoresis, 2015, in press.
[218] A microfluidic direct formate fuel cell on paper. Copenhaver, T. S.; Purohit, K. H.; Domalaon, K.; Pham, L.; Burgess, B. J.; Manorothkul, N.; Galvan, V., Sotez, S.; Gomez, F. A.; Haan, J. L. “Development of a microfluidic-based assay on a novel nitrocellulose platform.” Electrophoresis, 2015, in press.
[219] Jalali-Heravi, M.; Arrastia, M.; Gomez, F. A. “How chemometrics can improve microfluidic research? An overview of chemometric-assisted Microfluidics,” Anal. Chem. 2015, submitted.
[220] Zhao, G. –M.; Wang, J.; Ren, Y.; Beeli, P. “Giant enhancement and anomalous thermal hysteresis of saturation moment in magnetic nanoparticles embedded in multiwalled carbon nanotubes.” Nano Letters. 2013, 13, 2993.
[221] Wang, J.; Beeli, P.; Ren, Y.; Zhao, G. –M. “Giant magnetic moment enhancement of nickel nanoparticles embedded in multiwalled carbon nanotubes.” Phys. Rev. B 2010, 82, 193410.
[222] Zhao, G. –M. “Novel magnetic and electrical properties of carbon nanotubes: Consistent with ultrahigh temperature superconductivity,” in Carbon nanotubes and their applications edited by Qing Zhang (Pan Stanford Publishing, Singapore, 2011, ISBN: 9789814241908 (Hardcover), 9789814303187 (eBook)) page 319- 354.
[223] Zhao, G. –M.; Beeli, P. “Novel magnetic properties in multi-walled carbon nanotube mats: Consistent with the paramagnetic Meissner effect due to ultrahigh-temperature superconductivity,” Condensed Matter Theories (vol. 24), edited by Feodor Kusmartsev (World Scientific Publishing Co., Singapore, 2010) page 355- 366.
[224] Hanrahan, G.; Montes, R.; Gomez, F. A. “Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications.” Anal. Bioanal. Chem. 2008, 390, 169-179.
[225] Brereton, R.: “Chemometrics: Data Analysis for the Laboratory and Chemical Plant;” John Wiley & Sons, Chichester, 2003.
[226] Lee, K. -M.; Gilmore, D. F. “Formulation and process modeling of biopolymer (polyhydroxyalkanoates: PHAs) production from industrial wastes by novel crossed experimental design.” Proc. Biochem. 2005, 40, 229- 246.
[227] Adinarayana, K.; Ellaiah, P.; Srinivasulu, B.; Bhavani Devi, R.; Adinarayana, G. “Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation.” Proc. Biochem. 2003, 38, 1565-1572.
[228] Zhi, W.; Song, J.; Ouyang, F.; Bi, J. “Application of response surface methodology to the modeling of amylase purification by aqueous two-phase systems.” J. Biotech. 2005, 118, 157-165.
[229] Kristo, E.; Biliaderis, C. G.; Tzanetakis, N. “Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology.” Food Chem. 2003, 83, 437-446.
[230] Dingstad, G.; Egelandsdal, B. r.; Næs, T. “Modeling methods for crossed mixture experiments: a case study from sausage production.” Chemometr. Intell. Lab 2003, 66, 175-190.
[231] Dingstad, G. I.; Westad, F.; Næs, T. “Three case studies illustrating the properties of ordinary and partial least squares regression in different mixture models.” Chemometr. Intell. Lab. 2004, 71, 33-45.
[232] Awad, Z. K.; Aravinthan, T.; Zhuge, Y.; Gonzalez, F. “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications.” Mater. Des. 2012, 33, 534-544.
[233] Jalali-Heravi, M.; Parastar, H.; Ebrahimi-Najafabadi, H. “Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography and mass spectrometry analysis.” J. Chromatogr. A 2009, 1216, 6088-6097.
[234] Dejaegher, B.; Vander Heyden, Y. “Experimental designs and their recent advances in set-up, data interpretation, and analytical applications.” J. Pharm. Biomed. Anal. 2011, 56, 141-158.
[235] Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. l. “Response surface methodology (RSM) as a tool for optimization in analytical chemistry.” Talanta 2008, 76, 965-977.
[236] Gaspar, A.; Gomez, F. A. “Development of an ultra-low volume flow-cell for surface plasmon resonance detection in a miniaturized capillary electrophoresis system.” Electrophoresis, 2012, 33, 1723-1728.
[237] Liu, X.; Du, M.; Zhou, F.; Gomez, F. A. “Facile fabrication of an interface for on-line coupling of microchip capillary electrophoresis to surface plasmon resonance.” Bioanalysis 2012, 4, 373-379.
[238] Gaspar, A.; Gomez, F. A. “Application of surface plasmon resonance spectroscopy for adsorption studies of different types of components on poly(dimethylsiloxane).” Anal. Chim. Acta, 2013, 777, 72-77.
[239] Gaspar, A.; Kecskemeti, A.; Gomez, F. A. “Use of surface plasmon resonance to study the adsorption of detergents on poly(dimethysiloxane) surfaces.” Electrophoresis, 2013, 34, 1249-1252.